Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation
Abstract
:1. Introduction
2. Results
2.1. Background: Cluster States and Complex Networks
2.2. Improving the Overall Quality of a Complex Cluster
2.3. Concentrating the Squeezing
2.4. Creating a Quantum Channel between Nodes by Manipulating Existing Networks
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Barabási, A.L. Control principles of complex systems. Rev. Mod. Phys. 2016, 88, 035006. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Barzel, B.; Barabási, A.L. Universal resilience patterns in complex networks. Nature 2016, 530, 307. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, G. Interdisciplinary and physics challenges of network theory. Europhys. Lett. 2015, 111, 56001. [Google Scholar] [CrossRef] [Green Version]
- Biamonte, J.; Faccin, M.; De Domenico, M. Complex networks from classical to quantum. Commun. Phys. 2019, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Acin, A.; Cirac, J.I.; Lewenstein, M. Entanglement percolation in quantum networks. Nat. Phys. 2007, 3, 256. [Google Scholar] [CrossRef] [Green Version]
- Faccin, M.; Migdał, P.; Johnson, T.H.; Bergholm, V.; Biamonte, J.D. Community detection in quantum complex networks. Phys. Rev. X 2014, 4, 041012. [Google Scholar] [CrossRef] [Green Version]
- Paparo, G.D.; Muller, M.; Comellas, F.; Martin-Delgado, M.A. Quantum google in a complex network. Sci. Rep. 2013, 3, 2773. [Google Scholar] [CrossRef] [Green Version]
- Cabot, A.; Galve, F.; Eguíluz, V.M.; Klemm, K.; Maniscalco, S.; Zambrini, R. Unveiling noiseless clusters in complex quantum networks. NPJ Quantum Inf. 2018, 4, 57. [Google Scholar] [CrossRef]
- Kimble, H.J. The quantum internet. Nature 2008, 453, 1023. [Google Scholar] [CrossRef] [PubMed]
- Raussendorf, R.; Briegel, J.H. A One-Way Quantum Computer. Phys. Rev. Lett. 2001, 86, 5188. [Google Scholar] [CrossRef] [PubMed]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brao, F.G.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quantum Computing at IBM. Available online: https://www.ibm.com/quantum-computing/ (accessed on 1 October 2019).
- Reagor, M.; Osborn, C.B.; Tezak, N.; Staley, A.; Prawiroatmodjo, G.; Scheer, M.; Alidoust, N.; Sete, E.A.; Didier, N.; da Silva, M.P.; et al. Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci. Adv. 2018, 2, eaao3603. [Google Scholar] [CrossRef] [Green Version]
- Bernien, H.; Schwartz, S.; Keesling, A.; Levine, H.; Omran, A.; Pichler, H.; Choi, S.; Zibrov, A.S.; Endres, M.; Greiner, M.; et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 2017, 551, 579. [Google Scholar] [CrossRef]
- Barredo, D.; Lienhard, V.; De Leseleuc, S.; Lahaye, T.; Browaeys, A. Three-dimensional atomic structures assembled atom by atom. Nature 2018, 561, 79. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, J.; Yokoyama, S.; Kaji, T.; Sornphiphatphong, C.; Shiozawa, Y.; Makino, K.; Furusawa, A. Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photonics 2016, 1, 060801. [Google Scholar] [CrossRef]
- Chen, M.; Menicucci, N.C.; Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 2014, 112, 120505. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Roslund, J.; Ferrini, G.; Arzani, F.; Xu, X.; Fabre, C.; Treps, N. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 2017, 8, 15645. [Google Scholar] [CrossRef] [Green Version]
- Asavanant, W.; Shiozawa, Y.; Yokoyama, S.; Charoensombutamon, B.; Emura, H.; Alexander, R.N.; Takeda, S.; Yoshikaw, J.-I.; Menicucci, N.C.; Yonezawa, H.; et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 2019, 366, 363. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; Weedbrook, C.; Menicucci, N.C.; Ralph, T.C.; van Loock, P. Quantum computing with continuous-variable clusters. Phys. Rev. A 2009, 79, 062318. [Google Scholar] [CrossRef] [Green Version]
- Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V. Reconfigurable optical implementation of quantum complex networks. New J. Phys. 2018, 20, 053024. [Google Scholar] [CrossRef]
- Menicucci, N.C.; van Loock, P.; Gu, M.; Weedbrook, C.; Ralph, T.C.; Nielsen, M.A. Universal Quantum Computation with Continuous-Variable Cluster States. Phys. Rev. Lett. 2006, 97, 110501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrini, G.; Roslund, J.; Arzani, F.; Cai, Y.; Fabre, C.; Treps, N. Optimization of networks for measurement-based quantum computation. Phys. Rev. A 2015, 91, 032314. [Google Scholar] [CrossRef] [Green Version]
- Sansavini, F. Quantum Information Protocols in Complex Entangled Networks. Master’s Thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy, 2019. [Google Scholar]
- Hahn, F.; Pappa, A.; Eisert, J. Quantum network routing and local complementation. NPJ Quantum Inf. 2019, 76, 1359. [Google Scholar] [CrossRef] [Green Version]
- Pirker, A.; Wallnöfer, J.; Dür, H.J. Modular architectures for quantum networks. New J. Phys. 2018, 20, 053054. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Phys. Mod. Phys. 2012, 84, 621. [Google Scholar] [CrossRef]
- Braunstein, S.L. Squeezing as an irreducible resource. Phys. Rev. A 2005, 71, 055801. [Google Scholar] [CrossRef] [Green Version]
- Van Loock, P.; Weedbrook, C.; Gu, M. Building Gaussian cluster states by linear optics. Phys. Rev. A 2007, 76, 032321. [Google Scholar] [CrossRef] [Green Version]
- Van Loock, P.; Markham, D. Implementing stabilizer codes by linear optics. AIP Conf. Proc. 2011, 1363, 256. [Google Scholar]
- Dufour, A. Ingénierie D’états Quantiques Multimodes avec des Impulsions Femtosecondes. Ph.D. Thesis, Sorbonne Université, Paris, France, 2018. [Google Scholar]
- Barabási, A.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, D.; Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Erdős, P.; Rényi, A. On random graphs. Publ. Math. Debr. 1959, 6, 290–297. [Google Scholar]
- Cai, Y. Quantum Coherent Control with an Optical Frequency Comb. Ph.D. Thesis, École Normale Supérieure, Paris, France, 2015. [Google Scholar]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Adesso, G.; Xie, C.; Peng, K. Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States. Phys. Rev. Lett. 2009, 103, 070501. [Google Scholar] [CrossRef] [Green Version]
- Menicucci, N.C.; Flammia, S.T.; van Loock, P. Graphical calculus for Gaussian pure states. Phys. Rev. A 2011, 83, 042335. [Google Scholar] [CrossRef] [Green Version]
- Zyczkowski, K.; Kus, M. Random unitary matrices. J. Phys. A 1994, 27, 4235. [Google Scholar] [CrossRef]
- Roslund, J.; Shir, O.M.; Bäck, T.; Rabitz, H. Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control. Phys. Rev. A 2009, 80, 043415. [Google Scholar] [CrossRef]
(a) Barabási–Albert | (b) Erdős–Rényi | ||||||
---|---|---|---|---|---|---|---|
(dB) | (dB) | (dB) | (dB) | ||||
1 | −4.70 | [−4.73,−4.67] | 1.96 | 0.2 | −5.50 | [−5.54,−5.46] | 9.35 |
5 | −5.55 | [−5.58, −5.53] | 9.38 | 0.4 | −5.80 | [−5.83, −5.76] | 18.83 |
10 | −5.82 | [−5.84, −5.80] | 17.71 | 0.6 | −6.02 | [−6.04, −6.00] | 28.29 |
20 | −6.15 | [−6,16, −6.14] | 31.25 | 0.8 | −6.22 | [−6.23, −6.21] | 37.58 |
47 | −6.33 | [−6.33, −6.33] | 47 | 1 | −6.33 | [−6.33, −6.33] | 47 |
(a) | (b) | ||||
---|---|---|---|---|---|
(dB) | (dB) | (dB) | (dB) | ||
0 | −5.19 | 0 | −5.79 | ||
0.1 | −5.16 | 0.1 | −5.69 | ||
0.4 | −5.10 | 0.4 | −5.49 | ||
0.7 | −5.09 | 0.7 | −5.43 | ||
1 | −5.09 | 1 | −5.43 |
(dB) | (dB) | (dB) | |
---|---|---|---|
1 | −6.51 | −6.51 | −4.61 |
5 | −6.51 | −6.51 | −5.48 |
10 | −6.51 | −6.51 | −5.76 |
20 | −6.51 | −6.51 | −6.10 |
47 | −6.51 | −6.51 | −6.32 |
Graph | Between A and B | Same Team |
---|---|---|
6-node grid | Yes | No |
8-node grid | No | No |
10-node grid | Yes | No |
“X” | Yes | No |
“Y” | Yes | No |
Fully-connected | No | Yes |
“Z” | No | No |
Dual-rail | No | No |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sansavini, F.; Parigi, V. Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation. Entropy 2020, 22, 26. https://doi.org/10.3390/e22010026
Sansavini F, Parigi V. Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation. Entropy. 2020; 22(1):26. https://doi.org/10.3390/e22010026
Chicago/Turabian StyleSansavini, Francesca, and Valentina Parigi. 2020. "Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation" Entropy 22, no. 1: 26. https://doi.org/10.3390/e22010026
APA StyleSansavini, F., & Parigi, V. (2020). Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation. Entropy, 22(1), 26. https://doi.org/10.3390/e22010026