Entanglement of Pseudo-Hermitian Random States
Abstract
:1. Introduction
2. Pauli-Like Random Matrices
3. The Pseudo-Hermitian Hamiltonians
3.1. Entanglement of Chiral States
3.2. Entanglement of Bipartite States
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Dyson’s Formula
References
- Fring, A.; Frith, T. Eternal life of entropy in non-Hermitian quantum systems. Phys. Rev. A 2019, 100. [Google Scholar] [CrossRef] [Green Version]
- Mostafazadeh, A. Time-dependent pseudo-Hermitian Hamiltonians defining a unitary quantum system and uniqueness of the metric operator. Phys. Lett. B 2007, 650, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Znojil, M. Time-dependent version of crypto-Hermitian quantum theory. Phys. Rev. D 2008, 78. [Google Scholar] [CrossRef] [Green Version]
- Fring, A.; Frith, T. Mending the broken PT-regime via an explicit time-dependent Dyson map. Phys. Lett. A 2017, 381, 2318–2323. [Google Scholar] [CrossRef] [Green Version]
- Fring, A.; Frith, T. Solvable two-dimensional time-dependent non-Hermitian quantum systems with infinite dimensional Hilbert space in the broken PT-regime. J. Phys. A Math. Theor. 2018, 51, 265301. [Google Scholar] [CrossRef] [Green Version]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 2002, 43, 205. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 2002, 43, 2814. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. J. Math. Phys. 2002, 43, 3944–3951. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians HavingPTSymmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Boettcher, S.; Meisinger, P.N. PT-symmetric quantum mechanics. J. Math. Phys. 1999, 40, 2201. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Complex Extension of Quantum Mechanics. Phys. Rev. Lett. 2002, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947–1018. [Google Scholar] [CrossRef] [Green Version]
- Bohigas, O.; Pato, M.P. Non-Hermitian β-ensemble with real eigenvalues. AIP Adv. 2013, 3, 032130. [Google Scholar] [CrossRef]
- Marinello, G.; Pato, M. A pseudo-Hermitian β-Hermite family of matrices. Phys. A Stat. Mech. Appl. 2016, 444, 1049–1061. [Google Scholar] [CrossRef]
- Jain, S.R. Random matrix theories and exactly solvable models. Czechoslov. J. Phys. 2006, 56, 1021–1032. [Google Scholar] [CrossRef]
- Srivastava, S.; Jain, S. Pseudo-Hermitian random matrix theory. Fortschr. Phys. 2012, 61, 276–290. [Google Scholar] [CrossRef] [Green Version]
- Marinello, G.; Pato, M.P. Pseudo-Hermitian ensemble of random Gaussian matrices. Phys. Rev. E 2016, 94. [Google Scholar] [CrossRef] [Green Version]
- Marinello, G.; Pato, M.P. Pseudo-Hermitian anti-Hermitian ensemble of Gaussian matrices. Phys. Rev. E 2017, 96, 012154. [Google Scholar] [CrossRef]
- Marinello, G.; Pato, M.P. Statistical behavior of the characteristic polynomials of a family of pseudo-Hermitian Gaussian matrices. J. Phys. A Math. Theor. 2018, 51, 375003. [Google Scholar] [CrossRef]
- Marinello, G.; Pato, M.P. Statistical properties of eigenvalues of an ensemble of pseudo-Hermitian Gaussian matrices. Phys. Scr. 2019, 94, 115201. [Google Scholar] [CrossRef]
- Majumdar, S.N.; Bohigas, O.; Lakshminarayan, A. Exact Minimum Eigenvalue Distribution of an Entangled Random Pure State. J. Stat. Phys. 2008, 131, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Nadal, C.; Majumdar, S.N.; Vergassola, M. Phase Transitions in the Distribution of Bipartite Entanglement of a Random Pure State. Phys. Rev. Lett. 2010, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadal, C.; Majumdar, S.N.; Vergassola, M. Statistical Distribution of Quantum Entanglement for a Random Bipartite State. J. Stat. Phys. 2011, 142, 403–438. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, D.E. Quantum computational networks. Proc. R. Soc. Lond. A Math. Phys. Sci. 1989, 425, 73–90. [Google Scholar] [CrossRef]
- Majumdar, S.N. Extreme Eigenvalues of Wishart Matrices: Application to Entangled Bipartite System; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Pato, M.P.; Oshanin, G. Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory. J. Phys. A Math. Theor. 2013, 46, 115002. [Google Scholar] [CrossRef] [Green Version]
- Vivo, P.; Pato, M.P.; Oshanin, G. Random pure states: Quantifying bipartite entanglement beyond the linear statistics. Phys. Rev. E 2016, 93. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef] [Green Version]
- Hussein, M.S.; Pato, M.P. Description of chaos-order transition with random matrices within the maximum entropy principle. Phys. Rev. Lett. 1993, 70, 1089–1092. [Google Scholar] [CrossRef]
- Bengtsson, I. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2006. [Google Scholar]
- Daoud, M.; Kibler, M. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Entropy 2018, 20, 292. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, R.; Reboiro, M. Dynamics of finite dimensional non-hermitian systems with indefinite metric. J. Math. Phys. 2019, 60, 012106. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, R.; Reboiro, M. Optimal spin squeezed steady state induced by the dynamics of non-hermtian Hamiltonians. Phys. Scr. 2019, 94, 085220. [Google Scholar] [CrossRef] [Green Version]
- Yönaç, M.; Yu, T.; Eberly, J.H. Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B At. Mol. Opt. Phys. 2006, 39, S621–S625. [Google Scholar] [CrossRef]
- Yu, T.; Eberly, J.H. Sudden Death of Entanglement. Science 2009, 323, 598–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fring, A.; Moussa, M.H.Y. Unitary quantum evolution for time-dependent quasi-Hermitian systems with nonobservable Hamiltonians. Phys. Rev. A 2016, 93. [Google Scholar] [CrossRef] [Green Version]
- Fring, A.; Moussa, M.H.Y. Non-Hermitian Swanson model with a time-dependent metric. Phys. Rev. A 2016, 94. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulart, C.A.; Pato, M.P. Entanglement of Pseudo-Hermitian Random States. Entropy 2020, 22, 1109. https://doi.org/10.3390/e22101109
Goulart CA, Pato MP. Entanglement of Pseudo-Hermitian Random States. Entropy. 2020; 22(10):1109. https://doi.org/10.3390/e22101109
Chicago/Turabian StyleGoulart, Cleverson Andrade, and Mauricio Porto Pato. 2020. "Entanglement of Pseudo-Hermitian Random States" Entropy 22, no. 10: 1109. https://doi.org/10.3390/e22101109
APA StyleGoulart, C. A., & Pato, M. P. (2020). Entanglement of Pseudo-Hermitian Random States. Entropy, 22(10), 1109. https://doi.org/10.3390/e22101109