On the Performance of Efficient Channel Estimation Strategies for Hybrid Millimeter Wave MIMO System
Abstract
:1. Introduction
- (1)
- A novel S-ADMM based channel estimation scheme for the estimation of mmWave channels relying on a MIMO system is proposed. After updating the Lagrangian multipliers twice, a symmetrical version of ADMM can optimized the intermediate and essential variables in a symmetrical order. In addition with the Fortin and Glowinski’s constant which is generally known as a relaxation parameter, the convergence of the algorithm can be enhanced. In this paper, the overrelaxed version of relaxation parameter have been considered for simulation and experiments.
- (2)
- To explain the superiority of the proposed scheme, various different popular start-of-art schemes namely, OMP [13] Vector Message Approximation Passing (VAMP) [37], Ex-ADMM [34], ADMM [33], Block Orthogonal Matching Pursuit (BOMP) [38], Generalized Approximate Message Passing with Gaussian Mixture (GAMP-GM) [39,40] and Singular Value Thresholding (SVT) [41] have been considered for the comparison. Furthermore, the eminence of the proposed scheme is explained in terms of normalized mean squared error (NMSE), achievable spectral efficiency (ASE), convergence, effect on the number of scatterers and the number of possible paths.
2. System Model
3. Proposed Channel Estimation Scheme for mmWave MIMO System
3.1. Problem Formulation for mmWave MIMO System
3.2. Proposed S-ADMM Scheme for mmWave MIMO System
3.2.1. Solution of A
3.2.2. Solution of B
3.2.3. Solution of C
3.2.4. Solution of D
Algorithm 1. mmWave MIMO Channel Estimation Scheme via ADMM [33] | |
Require: | Subsampled matrix , side information matrices and , and the set of indices of observed entries in . |
Input: | , ,, ,, , and |
Output: | Estimated output channel matrix Initialization: |
Step 1: | for l = 0, 1, 2……. |
Step 2: | Update by using Equation (16). |
Step 3: | Update by using the Equation (20). |
Step 4: | Update by using the Equation (25). |
Step 5: | Update by using the Equation (26). |
Step 6: | Update by using Equations (13) and (14), respectively. |
Step7: | end for |
3.3. Algorithm Elucidation
Algorithm 2. Proposed S-ADMM based mmWave MIMO Channel Estimation Scheme | |
Require: | Subsampled matrix , side information matrices and , and the set of indices of observed entries in . |
Input: | , ,, ,, , and |
Output: | Estimated output channel matrix Initialization: |
Step 1: | for l = 0, 1, 2……. |
Step 2: | Update by using Equation (33) and it gets updated from the solution in Equation (16) |
Step 3: | Update and by using Equations (34) and (35), respectively. |
Step 4: | Update by using the Equation (36) and it used solution described in Equation (20) |
Step 5: | Update by using the Equation (37) and the solution of C is updated by Equation (25). |
Step 6: | Update by using the Equation (38) and the solution of D is provided by Equation (26). |
Step 7: | Update by using Equations (39) to (40), respectively. |
Step8: | end for |
3.4. Complexity Analysis
4. Simulation and Results
4.1. NMSE Comparison
4.2. ASE Comparison
4.3. Comparison of Convergence
4.4. Effect on Number of Scatterers and Paths
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Cheng, X.; Tang, C.; Zhang, Z. Accurate Channel Estimation for Millimeter-Wave MIMO Systems. IEEE Trans. Veh. Technol. 2019, 68, 5159–5163. [Google Scholar] [CrossRef]
- Cao, Z.; Geng, H.; Chen, Z.; Chen, P. Sparse-Based Millimeter Wave Channel Estimation with Mutual Coupling Effect. Electron 2019, 8, 358. [Google Scholar] [CrossRef] [Green Version]
- Darsena, D.; Gelli, G.; Verde, F. Beamforming and Precoding Techniques. Wiley 5G Ref. 2020, 1–29. [Google Scholar] [CrossRef]
- Manoj, A.; Kannu, A.P. Channel Estimation Strategies for Multi-User mm Wave Systems. IEEE Trans. Commun. 2018, 66, 5678–5690. [Google Scholar] [CrossRef]
- El Ayach, O.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Roh, W.; Seol, J.-Y.; Lee, B.; Kim, Y.; Cheun, K.; Aryanfar, F.; Park, J.; Lee, J.; Cho, J. Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Mo, J.; Schniter, P.; Prelcic, N.G.; Heath, R.W. Channel Estimation in Millimeter Wave MIMO Systems with One-Bit Quantization. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014; pp. 957–961. [Google Scholar]
- Alkhateeb, A.; El Ayach, O.; Leus, G.; Heath, R.W. Single-Sided Adaptive Estimation of Multi-Path Millimeter Wave Channels. In Proceedings of the 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Toronto, ON, Canada, 22–25 June 2014; pp. 125–129. [Google Scholar]
- Payami, S.; Shariat, M.; Ghoraishi, M.; Dianati, M. Effective RF Codebook Design and Channel Estimation for Millimeter Wave Communication Systems. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 1226–1231. [Google Scholar]
- Yang, J.; Wei, Z.; Li, N.; Sang, L.; Li, P. Enhanced Multi-Resolution Hierarchical Codebook Design for Adaptive Compressed Sensing Based Millimeter Wave Channel Estimation. In Proceedings of the 2016 IEEE/CIC International Conference on Communications in China (ICCC), Chengdu, China, 27–29 July 2016; pp. 1–5. [Google Scholar]
- Li, X.; Fang, J.; Li, H.; Wang, P. Millimeter Wave Channel Estimation via Exploiting Joint Sparse and Low-Rank Structures. IEEE Trans. Wirel. Commun. 2018, 17, 1123–1133. [Google Scholar] [CrossRef]
- Lee, J.; Gil, G.-T.; Lee, Y.H. Channel Estimation via Orthogonal Matching Pursuit for Hybrid MIMO Systems in Millimeter Wave Communications. IEEE Trans. Commun. 2016, 64, 2370–2386. [Google Scholar] [CrossRef]
- Ghauch, H.; Kim, T.-J.; Bengtsson, M.; Skoglund, M. Subspace Estimation and Decomposition for Large Millimeter-Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 528–542. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Gao, F.; Shlezinger, N.; Flanagan, M.F.; Eldar, Y.C. A Block Sparsity Based Estimator for mmWave Massive MIMO Channels wWith Beam Squint. IEEE Trans. Signal Process. 2019, 68, 49–64. [Google Scholar] [CrossRef]
- Vlachos, E.; Alexandropoulos, G.C.; Thompson, J.S.; Alexandropoulus, G. Wideband MIMO Channel Estimation for Hybrid Beamforming Millimeter Wave Systems via Random Spatial Sampling. IEEE J. Sel. Top. Signal Process. 2019, 13, 1136–1150. [Google Scholar] [CrossRef]
- Venugopal, K.; Alkhateeb, A.; Heath, R.W.; Prelcic, N.G. Time-Domain Channel Estimation for Wideband Millimeter Wave Systems with Hybrid Architecture. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, New Orleans, LA, USA, 5–9 March 2017; pp. 6493–6497. [Google Scholar]
- Alkhateeb, A.; El Ayach, O.; Leus, G.; Heath, R.W. Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Rial, R.; Rusu, C.; Alkhateeb, A.; González-Prelcic, N.; Heath, R.W. Channel Estimation and Hybrid Combining for mmWave: Phase Shifters or Switches? In Proceedings of the 2015 Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 1–6 February 2015; pp. 90–97. [Google Scholar]
- Alexandropoulos, G.C.; Chouvardas, S. Low Complexity Channel Estimation for Millimeter Wave Systems with Hybrid A/D Antenna Processing. In Proceedings of the 2016 IEEE Globecom Workshops, Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Venugopal, K.; Alkhateeb, A.; Gonzalez-Prelcic, N.; Heath, R.W. Channel Estimation for Hybrid Architecture-Based Wideband Millimeter Wave Systems. IEEE J. Sel. Areas Commun. 2017, 35, 1996–2009. [Google Scholar] [CrossRef]
- Alexandropoulos, G.C. Position Aided Beam Alignment for Millimeter Wave Backhaul Systems with Large Phased Arrays. In Proceedings of the 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, The Netherlands, 10–13 December 2017; pp. 1–5. [Google Scholar]
- Cai, T.T.; Wang, L. Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise. IEEE Trans. Inf. Theory 2011, 57, 4680–4688. [Google Scholar] [CrossRef]
- Xie, H.; Gao, F.; Zhang, S.; Jin, S. A Unified Transmission Strategy for TDD/FDD Massive MIMO Systems with Spatial Basis Expansion Model. IEEE Trans. Veh. Technol. 2017, 66, 3170–3184. [Google Scholar] [CrossRef]
- Adhikary, A.; Al Safadi, E.; Samimi, M.K.; Wang, R.; Caire, G.; Rappaport, T.S.; Molisch, A.F. Joint Spatial Division and Multiplexing for mm-Wave Channels. IEEE J. Sel. Areas Commun. 2014, 32, 1239–1255. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.L.H.; Ghrayeb, A. Compressive Sensing-Based Channel Estimation for Massive Multiuser MIMO Systems. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 April 2013; pp. 2890–2895. [Google Scholar]
- Rao, X.; Lau, V.K.N. Distributed Compressive CSIT Estimation and Feedback for FDD Multi-User Massive MIMO Systems. IEEE Trans. Signal Process. 2014, 62, 3261–3271. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Gao, F.; Jin, S.; Lin, H. An Overview of Enhanced Massive MIMO With Array Signal Processing Techniques. IEEE J. Sel. Top. Signal Process. 2019, 13, 886–901. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. In Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers; Now Publishers Inc.: Breda, The Netherlands, 2010; Volume 3, pp. 1–122. [Google Scholar]
- Wang, J.; Yu, F.; Chen, X.; Zhao, L. ADMM for Efficient Deep Learning with Global Convergence. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 111–119. [Google Scholar]
- Chan, S.H.; Wang, X.; Elgendy, O.A. Plug-and-Play ADMM for Image Restoration: Fixed-Point Convergence and Applications. IEEE Trans. Comput. Imaging 2016, 3, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Liang, J.; Guo, K.; Jing, Y. Accelerated Symmetric ADMM and Its Applications in Signal Processing. arXiv 2019, arXiv:1906.12015. [Google Scholar]
- Vlachos, E.; Alexandropoulos, G.C.; Thompson, J.S. Massive MIMO Channel Estimation for Millimeter Wave Systems via Matrix Completion. IEEE Signal Process. Lett. 2018, 25, 1675–1679. [Google Scholar] [CrossRef] [Green Version]
- Srivastav, P.S.; Chen, L.; Wahla, A.H.; Srivastav, P.; Srivastav, P. Precise Channel Estimation Approach for a mmWave MIMO System. Appl. Sci. 2020, 10, 4397. [Google Scholar] [CrossRef]
- He, B.; Ma, F.; Yuan, X. Convergence Study on the Symmetric Version of ADMM with Larger Step Sizes. SIAM J. Imaging Sci. 2016, 9, 1467–1501. [Google Scholar] [CrossRef]
- He, B.; Liu, H.; Wang, Z.; Yuan, X. A Strictly Contractive Peaceman--Rachford Splitting Method for Convex Programming. SIAM J. Optim. 2014, 24, 1011–1040. [Google Scholar] [CrossRef] [Green Version]
- Rangan, S.; Schniter, P.; Fletcher, A.K. Vector Approximate Message Passing. IEEE Trans. Inf. Theory 2019, 65, 6664–6684. [Google Scholar] [CrossRef] [Green Version]
- Eldar, Y.C.; Kuppinger, P.; Bolcskei, H. Block-Sparse Signals: Uncertainty Relations and Efficient Recovery. IEEE Trans. Signal Process. 2010, 58, 3042–3054. [Google Scholar] [CrossRef] [Green Version]
- Rangan, S. Generalized Approximate Message Passing for Estimation with Random Linear Mixing. In Proceedings of the 2011 IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 31 July–5 August 2011; pp. 2168–2172. [Google Scholar]
- Ma, Y.; Zhu, J.; Baron, D. Approximate Message Passing Algorithm with Universal Denoising and Gaussian Mixture Learning. IEEE Trans. Signal Process. 2016, 64, 5611–5622. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.-F.; Candés, E.J.; Shen, Z. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Torkildson, E.; Madhow, U.; Rodwell, M. Indoor Millimeter Wave MIMO: Feasibility and Performance. IEEE Trans. Wirel. Commun. 2011, 10, 4150–4160. [Google Scholar] [CrossRef] [Green Version]
- Akoum, S.; El Ayach, O.; Heath, R.W. Coverage and Capacity in Mmwave Cellular Systems. In Proceedings of the 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 4–7 November 2012; pp. 688–692. [Google Scholar]
- Smolders, A.B.; Reniers, A.C.F.; Johannsen, U.; Herben, M.H.A.J. Measurement and Calibration Challenges of Microwave and Millimeter-Wave Phased-Arrays. In Proceedings of the 2013 International Workshop on Antenna Technology (iWAT), Karlsruhe, Germany, 4–6 March 2013; pp. 358–361. [Google Scholar]
- Forenza, A.; Love, D.; Heath, R.W. Simplified Spatial Correlation Models for Clustered MIMO Channels with Different Array Configurations. IEEE Trans. Veh. Technol. 2007, 56, 1924–1934. [Google Scholar] [CrossRef]
- Sayeed, A. Deconstructing multiantenna fading channels. IEEE Trans. Signal Process. 2002, 50, 2563–2579. [Google Scholar] [CrossRef] [Green Version]
- Brady, J.; Behdad, N.; Sayeed, A.M. Beamspace MIMO for Millimeter-Wave Communications: System Architecture, Modeling, Analysis, and Measurements. IEEE Trans. Antennas Propag. 2013, 61, 3814–3827. [Google Scholar] [CrossRef]
- Keshavan, R.H.; Montanari, A.; Oh, S. Matrix Completion From a Few Entries. IEEE Trans. Inf. Theory 2010, 56, 2980–2998. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, M.; Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. arXiv 2010, arXiv:1009.5055. [Google Scholar]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Glowinski, R. Numerical Methods for Nonlinear Variational Problems; Tata Institute of Fundamental Research: Mumbai, Maharashtra, India, 1980. [Google Scholar]
- Chen, C.; He, B.; Yuan, X. Matrix completion via an alternating direction method. Ima J. Numer. Anal. 2011, 32, 227–245. [Google Scholar] [CrossRef]
- He, B.; Xu, M.; Yuan, X. Solving large-scale least squares covariance matrix problems by alternating direction methods. SIAM J. Matrix Anal. Appl. 2011, 32, 136. [Google Scholar] [CrossRef]
- Eckstein, J.; Yao, W. Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives. Pac. J. Optim. 2015, 11, 619–644. [Google Scholar]
- Eckstein, J.; Bertsekas, D.P. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 1992, 55, 293–318. [Google Scholar] [CrossRef] [Green Version]
- Gabay, D. Chapter IX Applications of the Method of Multipliers to Variational Inequalities. In Mathematical Models in Environmental Problems; Elsevier: Amsterdam, The Netherlands, 1983; Volume 15, pp. 299–331. [Google Scholar]
- Douglas, J.; Rachford, H.H. On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 1956, 82, 421–439. [Google Scholar] [CrossRef]
- Lions, P.L.; Mercier, B. Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM J. Numer. Anal. 1979, 16, 964–979. [Google Scholar] [CrossRef]
- Peaceman, D.W.; Rachford, J.H.H. The Numerical Solution of Parabolic and Elliptic Differential Equations. J. Soc. Ind. Appl. Math. 1955, 3, 28–41. [Google Scholar] [CrossRef]
- Ma, F.; Ni, M.; Zhang, X.; Yu, Z. Solving Lasso: Extended ADMM is more efficient than ADMM. In Proceedings of the 2015 Chinese Automation Congress (CAC), Wuhan, China, 27–29 November 2015; pp. 55–58. [Google Scholar] [CrossRef]
- Chiang, K.-Y.; Hsieh, C.-J.; Dhillon, I.S. Matrix Completion with Noisy Side Information. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 3447–3455. [Google Scholar]
- Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Van Der Vorst, H.A. Iterative Krylov Methods for Large Linear Systems; Cambridge University Press: Cambridge, UK, 2003; Volume 13. [Google Scholar]
- Bucklew, J.; Radeke, R. On the monte carlo simulation of digital communication systems in gaussian noise. IEEE Trans. Commun. 2003, 51, 267–274. [Google Scholar] [CrossRef]
- Berriche, L.; Abed-Meraim, K.; Belfiore, J. Investigation of the Channel Estimation Error on MIMO System Performance. In Proceedings of the 2005 13th European Signal Processing Conference, Antalya, Turkey, 4–8 September 2005; pp. 1–4. [Google Scholar]
- Yoo, T.; Goldsmith, A. Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Trans. Inf. Theory 2006, 52, 2203–2214. [Google Scholar] [CrossRef] [Green Version]
Scaler, vector and matrix. | |
Matrix transpose, conjugate transpose and conjugate. | |
, and | Frobenius norm, nuclear norm and |
Operands | Matrix Hadamard and Kronecker products. |
vec (.) | Vectorization of (.). |
unvec (.) | Inverse operation of vec(.). |
Expected value of {.}. | |
diag(.) | Diagonal of (.). |
N × N identity matrix. |
Carrier Frequency | 90 GHz |
Maximum numbers of iterations | 100 [64] |
Maximum numbers of Monte Carlo realizations | 100 [64] |
Number of transmitter antennas | 64 |
Number of transmitter antennas | 64 |
Spacing between antennas d | |
Signal-to-noise Ratio (SNR) | 30 dB |
Number of mmWave channel path | 2 |
Number of clusters | 1 |
Standard deviation of uniformly distributed AoA’s and AoD’s | 55° |
Uniform distribution range of AoA’s and AoD’s | [0, 2π] |
Relaxation factor | 1.5 |
Weighting factors | and |
Step size | = 0.005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastav, P.S.; Chen, L.; Wahla, A.H. On the Performance of Efficient Channel Estimation Strategies for Hybrid Millimeter Wave MIMO System. Entropy 2020, 22, 1121. https://doi.org/10.3390/e22101121
Srivastav PS, Chen L, Wahla AH. On the Performance of Efficient Channel Estimation Strategies for Hybrid Millimeter Wave MIMO System. Entropy. 2020; 22(10):1121. https://doi.org/10.3390/e22101121
Chicago/Turabian StyleSrivastav, Prateek Saurabh, Lan Chen, and Arfan Haider Wahla. 2020. "On the Performance of Efficient Channel Estimation Strategies for Hybrid Millimeter Wave MIMO System" Entropy 22, no. 10: 1121. https://doi.org/10.3390/e22101121
APA StyleSrivastav, P. S., Chen, L., & Wahla, A. H. (2020). On the Performance of Efficient Channel Estimation Strategies for Hybrid Millimeter Wave MIMO System. Entropy, 22(10), 1121. https://doi.org/10.3390/e22101121