Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants
Abstract
:1. Introduction
2. Spatial Phase Space Description
3. Ideal Liquid Dynamics and Its Geometry
4. Hamiltonian Analysis: The Adiabatic Liquid Dynamics
5. Hamiltonian Analysis: The Isothermal Liquid Dynamics
6. Hamiltonian Analysis: The Adiabatic Magneto-Hydrodynamic Superfluid Motion
6.1. Geometric Description
6.2. Magneto-Hydrodynamic Invariants and Their Geometry
7. The Isentropic Flows on Phase Spaces with Gauge Symmetry
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chernoff, P.R.; Royden, H.F. The equation ∂f/∂dx = ∂f/∂y. Am. Math. Mon. 1975, 82, 530–531. [Google Scholar] [CrossRef]
- Montel, P. Sur differentielles totales et les fontions monogenes. C. R. Acad. Sc. Paris 1913, 156, 1820–1822. [Google Scholar]
- Tolstoff, G. Sur la differentielle totale. Recl. Math. 1941, 9, 461–468. [Google Scholar]
- Arnold, V.I. Sur la geometrie differerentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 1966, 16, 319–361. [Google Scholar] [CrossRef] [Green Version]
- Holm, D.; Kupershmidt, B. Poisson structures of superfluids. Phys. Lett. 1982, 91A, 425–430. [Google Scholar] [CrossRef]
- Kupershmidt, B.A.; Ratiu, T. Canonical Maps Between Semidirect Products withApplications to Elasticity and Superfluids. Commun. Math. Phys. 1983, 90, 235–250. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.; Ratiu, T.; Schmid, R.; Spencer, R.; Weinstein, A. Hamiltonian systems with symmetry, coadjoint orbits, and plasma physics. Atti Acad. Sci. Torino 1983, 117, 289–340. [Google Scholar]
- Marsden, J.; Weinstein, A. The Hamiltonian structure of the Maxwell-Vlasov equations. Phys. D 1982, 4, 394–406. [Google Scholar] [CrossRef]
- Marsden, J.; Weinstein, A. Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 1974, 5, 121–130. [Google Scholar] [CrossRef]
- Weinstein, A. Sophus Lie and symplectic geometry. Expos. Math. 1983, 1, 95–96. [Google Scholar]
- Weinstein, A. The local structure of Poisson manifolds. J. Differ. Geom. 1983, 18, 523–557. [Google Scholar] [CrossRef]
- Gay-Balmaz, F.; Monastyrsky, M.; Ratiu, T.S. Lagrangian Reductions and Integrable Systems in Condensed Matter. Commun. Math. Phys. 2015, 335, 609–636. [Google Scholar] [CrossRef]
- Gay-Balmaz, F.; Yoshimira, H. Dirac reduction for nonholonomic mechanical systems and semi-direct product. arXiv 2014, arXiv:1410.5394v1. [Google Scholar]
- Holm, D.D.; Tronci, C. Euler-Poincare formulation of hybrid plasma models. arXiv 2011, arXiv:1012.0999v2. [Google Scholar] [CrossRef] [Green Version]
- Khesin, B.; Lenells, J.; Misiolek, G.; Preston, S.C. Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geom. Funct. Anal. 2013, 23, 334–366. [Google Scholar] [CrossRef] [Green Version]
- Kolev, B. Lie groups and mechanics: Introduction. J. Nonl. Math. Phys. 2004, 11, 480–498. [Google Scholar] [CrossRef] [Green Version]
- Kushner, A.; Lychagin, V.; Roop, M. Optimal Thermodynamic Processes for Gases. Entropy 2020, 22, 448. [Google Scholar] [CrossRef]
- Marsden, J.E.; Ratiu, T.S.; Shkoller, S. The geometry and analysis of the averaged Euler equations and a new diffeomorphism group. Geom. Funct. Anal. 2000, 10, 582–599. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.; Ratiu, T.; Weinstein, A. Reduction and Hamiltoninan structures on duals of semidirect product Lie algebras. Contemp. Math. 1984, 28, 55–100. [Google Scholar]
- Mrugala, R. Continuous contact transformations in thermodynamics. Rep. Math. Phys. 1993, 33, 149–154. [Google Scholar] [CrossRef]
- Mrugala, R. Lie, Jacobi, Poisson and quasi-Poisson structures in thermodynamics. Tensor New Ser. 1995, 56, 37–45. [Google Scholar]
- Preston, S.C. For ideal fluids, Eulerian and Lagrangian instabilities are equivalent. Geom. Funct. Anal. 2004, 14, 1044–1062. [Google Scholar] [CrossRef]
- Schneider, E. Differential Invariants. In Nonlinear PDEs, Their Geometry, and Applications; Kycia, R.A., Ulan, M., Schneider, E., Eds.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Schneider, E. Differential invariants of measurements, and their connection to central moments. arXiv 2020, arXiv:2005.08895v1. [Google Scholar]
- Tronci, C.; Tassi, E.; Camporeale, E.; Morrison, P.J. Hybrid Vlasov-MHD models: Hamiltonian vs. non-Hamiltonian. arXiv 2014, arXiv:1403.2773v2. [Google Scholar] [CrossRef]
- Vizman, C. Geodesic Equations on Diffeomorphism Groups. SIGMA 2008, 4, 030. [Google Scholar] [CrossRef]
- Esen, O.; Grmela, M.; Gumral, H.; Pavelka, M. Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy. Entropy 2019, 21, 907. [Google Scholar] [CrossRef] [Green Version]
- Grmela, M. Contact Geometry of Mesoscopic Thermodynamics and Dynamics. Entropy 2014, 16, 1652–1686. [Google Scholar] [CrossRef] [Green Version]
- Ebin, D.; Marsden, J. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 1970, 125, 102–163. [Google Scholar] [CrossRef]
- Kambe, T. Geometric theory of fluid flows and dynamical systems. Fluid Dyn. Res. 2002, 30, 331–378. [Google Scholar] [CrossRef]
- Abraham, R.; Marsden, J. Foundations of Mechanics, 2nd ed.; Benjamin Cummings: San Francisco, CA, USA, 1978. [Google Scholar]
- Arnold, V.I.; Khesin, B.A. Topological Methods in Hydrodynamics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Holm, D.; Marsden, J.; Ratiu, T.; Weinstein, A. Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 1985, 123, 1–116. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, E.A.; Mikhailov, A.V. On the topological meaning of canonical Clebsch variables. Phys. Lett. A 1980, 77, 37–38. [Google Scholar] [CrossRef]
- Henyea, F. Gauge groups and Nöther’s theorem for continuum mechanics. AIF Conf. Proc. 1982, 88, 85–90. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1978. [Google Scholar]
- Warner, F.W. Foundations of Diffderentiable Manifolds and Lie Groups; Springer: New York, NY, USA, 1983. [Google Scholar]
- Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics; World Scientific Publisher: Singapore, 2011. [Google Scholar]
- Olver, P. Applications of Lie Groups to Differential Equations; Graduate Texts in Mathematics Series 107; Springer: New York, NY, USA, 1986. [Google Scholar]
- Prykarpatsky, A.; Mykytiuk, I. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds; Classical and Quantum Aspects; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Berezin, F.A. Lectures on Statistical Physics. Max-Plank-Institut für Mathematik in den Naturwissenschaften, Leipzig, Preprint no.: 157. 2006. Available online: https://www.mis.mpg.de/publications/preprints/2006/prepr2006-157.html (accessed on 25 October 2020).
- Huang, K. Statistical Mechanics; John Wiley and Sons Inc.: New York, NY, USA; London, UK, 1963. [Google Scholar]
- Minlos, R.A. Introduction to Mathematical Statistical Physics; University Lecture Series 19; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Holm, D.; Kupershmidt, B. Superfluid plasmas: Multivelocity nonlinear hydrodynamics of superfluid solutions with charged condensates coupled electromagnetically. Phys. Rev. 1987, 36A, 3947–3956. [Google Scholar] [CrossRef] [PubMed]
- Volovik, G.E. Poisson bracket scheme for vortex dynamics in superfluids and superconductors and the effect of the band structure of the crystal. J. Exp. Theor. Phys. Lett. 1996, 64, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Moffat, H.K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1969, 35, 117–129. [Google Scholar] [CrossRef]
- Prykarpatsky, A.K.; Bogoliubov, N.N., Jr.; Golenia, J. A symplectic generalization of the Peradzyński helicity theorem and some applications. Int. J. Theor. Phys. 2008, 47, 1919–1928. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Infinite-dimensional analogs of the minimal coupling principle and of the Poincare lemma for differential two-forms. Diff. Geom. Appl. 1992, 2, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Thirring, W. Classical Mathematical Physics, 3rd ed.; Springer: Berlin, Germany, 1992. [Google Scholar]
- Kummer, J. On the construction of the reduced phase space of a Hamiltonian system with symmetry. Indiana Univ. Math. J. 1981, 30, 281. [Google Scholar] [CrossRef]
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K.; Taneru, U.; Prykarpatsky, Y.A. The Electromagnetic Dirac-Fock-Podolsky Problem snd Dymplectic Maxwell and Yang-Mills Type Dynamical Systems. Preprint ICTP: IC/2009/005. Available online: http://publications.ictp.it (accessed on 25 October 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balinsky, A.A.; Blackmore, D.; Kycia, R.; Prykarpatski, A.K. Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants. Entropy 2020, 22, 1241. https://doi.org/10.3390/e22111241
Balinsky AA, Blackmore D, Kycia R, Prykarpatski AK. Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants. Entropy. 2020; 22(11):1241. https://doi.org/10.3390/e22111241
Chicago/Turabian StyleBalinsky, Alexander A., Denis Blackmore, Radosław Kycia, and Anatolij K. Prykarpatski. 2020. "Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants" Entropy 22, no. 11: 1241. https://doi.org/10.3390/e22111241
APA StyleBalinsky, A. A., Blackmore, D., Kycia, R., & Prykarpatski, A. K. (2020). Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants. Entropy, 22(11), 1241. https://doi.org/10.3390/e22111241