Non-Deterministic Semantics for Quantum States
Abstract
:1. Introduction
2. The Principle of Truth Functionality and Algebra Homomorphisms
2.1. Homomorphisms
2.1.1. Types of Languages and Homomorphisms between Structures
- 1.
- Individual variables: .
- 2.
- Auxiliary symbols: left and right parenthesis, and commas.
- 3.
- Propositional connectives: ¬, ∨, ∧, →,…
- 4.
- Equality symbol: =.
- 5.
- Existential quantifier: ∃.
- 6.
- The symbols of τ.
- , where , is the set of constants of τ.
- If , and , then .
- .
- If , then , , and .
- If and is a variable, then .
- .
- .
- h is a function from A to B; .
- For each relational n-ary symbol in τ and each ,
- For each functional n-ary symbol in τ and each ,
- For each
3. Quantum States and the Gleason and Kochen–Specker Theorems
3.1. Quantum Probabilities and Gleason’S Theorem
- , for any mutually disjoint family
- .
- .
- For any pairwise orthogonal and denumerable family , .
- for any pairwise disjoint and denumerable family , .
- for any pairwise orthogonal and denumerable family of elements , .
3.2. The Kochen–Specker Theorem and the Failure of Truth Functionality in Quantum Mechanics
- for every P, iff
- for every pair , if and , then .
4. Non-Deterministic Semantics
4.1. Deterministic Matrices
- V is a non-empty set of truth-values.
- D (designated truth-values) is a non-empty proper subset of V.
- For every n-ary connective ⟡ of L, O includes a corresponding function
4.2. Non-Deterministic Matrices (N-Matrices)
- V is a non-empty set of truth-values.
- (designated truth-values) is a non-empty proper subset of V.
- For every n-ary connective ⟡ of L, O includes a corresponding function
- 1.
- A partial dynamic valuation in M (or an M-legal partial dynamic valuation), is a function v from some closed under subformulas subset to V, such that for each n-ary connective ⟡ of L, the following holds for all :A partial valuation in M is called a valuation if its domain is .
- 2.
- A (partial) static valuation in M (or an M-legal (partial) static valuation), is a (partial) dynamic valuation (defined in some ) which satisfies also the following composability (or functionality) principle: for each n-ary connective ⟡ of L and for every , if , then
- 1.
- A (partial) valuation v in M satisfies a formula ψ ) if ( is defined and) . It is a model of Γ () if it satisfies every formula in Γ.
- 2.
- We say that ψ is dynamically (statically) valid in M, in symbols (), if for each dynamic (static) valuation v in M.
- 3.
- the dynamic (static) consequence relation induced by M is defined as follows: () if every dynamic (static) model v in M of Γ satisfies some .
5. N-Matrices for Probabilistic Theories
5.1. Construction of the N-Matrices for the Quantum Formalism
5.2. The General Case
6. Other Logical Aspects of Our Construction
6.1. Quantum N-Matrices and Adequacy
- 1.
- :
- 2.
- :
- 3.
- :
- If :
- If and
- If :
- If
- If
- If
6.2. Double Negation
- If :
- If
6.3. Quantum N-Matrix as a Refinement of an F-Expansion of a Finite N-Matrix
- 1.
- is a refinement of if , , and for every n-ary conective ⟡ of L and every tuple .
- 2.
- Let F be a function that assigns to each a non-empty set , such that if . The F-expansion of is the following N-matrix , with , , and whenever ⟡ is an n-ary connective of L, and , for every . We say that is an expansion of if is the F-expansion of for some function F.
- 1.
- simple if it is a simple refinement of the F-expansion of .
- 2.
- preserving if for every .
- 3.
- strongly preserving if it is preserving, and for every , and , it holds that the set is not empty.
- 1.
- For every , iff .
- 2.
- For every and , it holds that .
7. Conclusions
- There are several ways in which one can affirm that the quantum formalism does not obey truth functionality.
- The set of projection operators admits N-matrices, and thus, the N-matrices formalism can be adapted to quantum mechanics.
- Each quantum state can be interpreted as a valuation associated to a non-deterministic semantics. Indeed, the set of quantum states can be characterized as being equivalent to the set of valuations defined by the N-matrices that we propose in Section 5. We have proved that quantum states, considered as valuations, are, in general, dynamic and non-static. We have provided a similar analysis for generalized probabilistic models.
- There exist different candidates for non-deterministic semantics which are compatible with the quantum formalism. We have studied different examples.
- It is possible to give a notion of a logical consequence associated to non-deterministic semantics in the quantum formalism (a study that should be extended, of course, in future work).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avron, A.; Zamansky, A. Non-deterministic Semantics for Logical Systems. In Handbook of Philosophical Logic; Gabbay, D.M., Guenthner, F., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 16, pp. 227–304. [Google Scholar]
- Marcos, J. What Is a Non-truth-functional Logic? Stud. Log. 2009, 92, 215–240. [Google Scholar] [CrossRef]
- Avron, A.; Lev, I. Non-deterministic Multi-valued Structures. J. Log. Comput. 2005, 15, 241–261. [Google Scholar] [CrossRef]
- Avron, A.; Lev, I. Canonical Propositional Gentzen-type Systems. In Automated Reasoning; Goré, R., Leitsch, A., Nipkow, T., Eds.; IJCAR 2001; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2083, pp. 529–544. [Google Scholar]
- Avron, A.; Konikowska, B. Proof Systems for Logics Based on Non-deterministic Multiple-valued Structures. Log. J. IGPL 2005, 13, 365–387. [Google Scholar] [CrossRef]
- Kochen, S.; Specker, E.P. The Problem of Hidden Variables in Quantum Mechanics. J. Math. Mech. 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Döring, A. Kochen-Specker Theorem for von Neumann Algebras. Int. J. Theor. Phys. 2005, 44, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K.; Tkadlec, J. Greechie diagrams, nonexistence of measures in quantum logics, and Kochen-Specker-type constructions. J. Math. Phys. 1996, 37, 5380–5401. [Google Scholar] [CrossRef] [Green Version]
- Smith, D. Orthomodular Bell-Kochen-Specker Theorem. Int. J. Theor. Phys. 2004, 43, 2023–2027. [Google Scholar] [CrossRef]
- da Costa, N.; Lombardi, O.; Lastiri, M. A modal ontology of properties for quantum mechanics. Synthese 2013, 190, 3671–3693. [Google Scholar] [CrossRef]
- Popescu, S. Nonlocality beyond quantum mechanics. Nat. Phys. 2014, 10, 264–270. [Google Scholar] [CrossRef]
- Kleinmann, M.; V’ertesi, T.; Cabello, A. Proposed experiment to test fundamentally binary theories. Phys. Rev. A 2017, 96, 032104. [Google Scholar] [CrossRef] [Green Version]
- Frustaglia, D.; Baltanás, J.P.; Velxaxzquez-Ahumada, M.C.; Fernxaxndez-Prieto, A.; Lujambio, A.; Losada, V.; Freire, M.J.; Cabello, A. Classical physics and the bounds of quantum correlations. Phys. Rev. Lett. 2016, 116, 250404. [Google Scholar] [CrossRef]
- Barros, J.A.D.; Oas, G. Some Examples of Contextuality in Physics: Implications to Quantum Cognition—Contextuality from Quantum Physics to Psychology; World Scientific: Singapore, 2015. [Google Scholar]
- Aerts, D.; Gabora, L.; Sozzo, S. Concepts and their dynamics: A quantum-theoretic modeling of human thought. Top. Cogn. Sci. 2013, 5, 737–772. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A.Y. Ubiquitous Quantum Structure from Psychology to Finance; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Barros, J.A.D. Decision Making for Inconsistent Expert Judgments Using Negative Probabilities. In Quantum Interaction; Atmanspacher, H., Haven, E., Kitto, K., Raine, D., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8369, pp. 257–269. [Google Scholar]
- Amaral, B.; Cunha, M.T.; Cabello, A. Quantum theory allows for absolute maximal contextuality. Phys. Rev. A 2015, 92, 062125. [Google Scholar] [CrossRef] [Green Version]
- Cabello, A. Proposal for revealing quantum nonlocality via local contextuality. Phys. Rev. Lett. 2010, 104, 220401. [Google Scholar] [CrossRef] [Green Version]
- Barros, J.A.D.; Dzhafarov, E.N.; Kujala, J.V.; Oas, G. Measuring Observable Quantum Contextuality. In Quantum Interaction; Atmanspacher, H., Filk, T., Pothos, E., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9535. [Google Scholar]
- Abramsky, S.; Brandenburger, A. The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 2011, 13, 113036. [Google Scholar] [CrossRef]
- Barros, J.A.D.; Holik, F.; Krause, D. Contextuality and Indistinguishability. Entropy 2017, 19, 435. [Google Scholar] [CrossRef] [Green Version]
- Birkhoff, G.; von Neumann, J. The Logic of Quantum Mechanics. Ann. Math. 1936, 37, 823–843. [Google Scholar] [CrossRef]
- Svozil, K. Quantum Logic; Springer: Singapore, 1998. [Google Scholar]
- Beltrametti, E.G.; Cassinelli, G. The Logic of Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Chiara, M.L.D.; Greechie, R.G.R. Reasoning in Quantum Theory; Kluwer Acad. Pub.: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Piron, C. Foundations of Quantum Physics; W. A. Benjamin, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Aerts, D.; Daubechies, I. A characterization of subsystems in physics. Lett. Math. Phys. 1979, 3, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Aerts, D.; Daubechies, I. A mathematical condition for a sublattice of a propositional system to represent a physical subsystem, with a physical interpretation. Lett. Math. Phys. 1979, 3, 19–27. [Google Scholar] [CrossRef]
- Engesser, K.; Gabbay, D.M.; Lehmann, D. (Eds.) Handbook Of Quantum Logic And Quantum Structures; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Rédei, M. Quantum Logic in Algebraic Approach; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Domenech, G.; Holik, F.; Massri, C. A quantum logical and geometrical approach to the study of improper mixtures. J. Math. Phys. 2010, 51, 052108. [Google Scholar] [CrossRef] [Green Version]
- Holik, F.; Massri, C.; Ciancaglini, N. Convex quantum logic. Int. J. Theor. Phys. 2012, 51, 1600–1620. [Google Scholar] [CrossRef] [Green Version]
- Holik, F.; Massri, C.; Plastino, A.; Zuberman, L. On the Lattice Structure of Probability Spaces in Quantum Mechanics. Int. J. Theor. Phys. 2013, 52, 1836–1876. [Google Scholar] [CrossRef] [Green Version]
- Fortin, S.; Vanni, L. Quantum Decoherence: A Logical Perspective. Found. Phys. 2014, 44, 1258–1268. [Google Scholar] [CrossRef] [Green Version]
- Fortin, S.; Holik, F.; Vanni, L. Non-unitary Evolution of Quantum Logics. Springer Proc. Phys. 2016, 184, 219–234. [Google Scholar]
- Losada, M.; Fortin, S.; Holik, F. Classical limit and quantum logic. Int. J. Theor. Phys. 2018, 57, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Losada, M.; Fortin, S.; Holik, F.; Gadella, M. Dynamics of algebras in quantum unstable systems. Int. J. Mod. Phys. A 2018, 33, 1850109. [Google Scholar] [CrossRef]
- Holik, F.; Sergioli, G.; Freytes, H.; Plastino, A. Logical Structures Underlying Quantum Computing. Entropy 2019, 21, 77. [Google Scholar] [CrossRef] [Green Version]
- Holik, F.; Sergioli, G.; Freytes, H.; Giuntini, R.; Plastino, A. Toffoli gate and quantum correlations: A geometrical approach. Quantum Inf. Process. 2017, 16, 55. [Google Scholar] [CrossRef]
- Chiara, M.L.D.; Giuntini, R.; Leporini, R.; Negri, E.; Sergioli, G. Quantum information, cognition and music. Front. Psychol. 2015, 6, 1583. [Google Scholar]
- Chiara, M.L.D.; Giuntini, R.; Leporini, R.; Sergioli, G. Quantum Computation and Logic—How Quantum Computers Have Inspired Logical Investigations; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Halmos, P.; Givant, S. Logic as Algebra; Mathematical Association of America: Washington, DC, USA, 1998. [Google Scholar]
- Sagastume, M.; San Martin, H. Álgebra del cálculo proposicional; Instituto de Matemática—CONICET, Universidad Nacional del Sur: Bahía Blanca, Argentina, 2019. [Google Scholar]
- Montaño, J.A.A. Compacidad en la lógica de Primer Orden y su Relación con el Teorema de Completitud; Coordinación de Servicios Editoriales, Facultad de Ciencias, UNAM: Ciudad de México, Mexico, 1999. [Google Scholar]
- Gleason, A. Measures on the Closed Subspaces of a Hilbert Space. J. Math. Mech. 1957, 6, 885–893. [Google Scholar] [CrossRef]
- Buhagiar, D.; Chetcuti, E.; Dvurečenskij, A. On Gleason’s theorem without Gleason. Found. Phys. 2009, 39, 550–558. [Google Scholar] [CrossRef]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics, 12th ed.; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Kolmogorov, A.N. Foundations of Probability Theory; Julius Springer: Berlin, Germany, 1933. [Google Scholar]
- Gudder, S.P. Stochastic Methods in Quantum Mechanics; North Holland: New York, NY, USA, 1979. [Google Scholar]
- Rédei, M.; Summers, S. Quantum probability theory. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2007, 38, 390–417. [Google Scholar] [CrossRef] [Green Version]
- Holik, F.; Sáenz, M.; Plastino, A. A discussion on the orign of quantum probabilities. Ann. Phys. 2014, 340, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Holik, F.; Plastino, A. Quantum Mechanics: A New Turn in Probability Theory. In Contemporary Research in Quantum Systems; Zoheir, E., Ed.; Nova Publishers: New York, NY, USA, 2014. [Google Scholar]
- Holik, F.; Bosyk, G.M.; Bellomo, G. Quantum Information as a Non-Kolmogorovian Generalization of Shannon’s Theory. Entropy 2015, 17, 7349–7373. [Google Scholar] [CrossRef] [Green Version]
- Holik, F.; Plastino, A.; Saenz, M. Natural information measures in Cox’ approach for contextual probabilistic theories. Quantum Inf. Comput. 2016, 16, 0115–0133. [Google Scholar]
- Kalmbach, G. Orthomodular Lattices; Academic Press: San Diego, CA, USA, 1983. [Google Scholar]
- Friedman, M.; Glymour, C. If quanta had logic. J. Philos. Log. 1972, 1, 16–28. [Google Scholar] [CrossRef]
- Hellman, G. Quantum Logic and Meaning. In Proceedings of the Biennial Meeting of the Philosophy of Science Association, East Lansing, MI, USA, 17–19 October 1980; The University of Chicago Press: Chicago, IL, USA, 1980; Volume 2, pp. 493–511. [Google Scholar]
- Isham, C.J.; Butterfield, J. Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations. Int. J. Theor. Phys. 1998, 37, 2669–2733. [Google Scholar] [CrossRef]
- Domenech, G.; Freytes, H. Contextual logic for quantum systems. J. Math. Phys. 2005, 46, 012102. [Google Scholar] [CrossRef]
- Domenech, G.; Freytes, H.; de Ronde, C. A Topological Study of Contextuality and Modality in Quantum Mechanics. Int. J. Theor. Phys. 2008, 47, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Bub, J.; Clifton, R. A Uniqueness Theorem for ‘No Collapse’ Interpretations of Quantum Mechanics. Stud. Hist. Phil. Mod. Phys. 1996, 21, 181–219. [Google Scholar] [CrossRef]
- Redhead, M. Incompleteness, Nonlocality and Realism—A Prolegomenon to the Philosophy of Quantum Mechanics; Clarendon Press: Oxford, UK, 1987. [Google Scholar]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 1966, 38, 447–452. [Google Scholar] [CrossRef]
- Batens, D. Inconsistency-Adaptive Logics. In Logic at Work, Essays Dedicated to the Memory of Helena Rasiowa; Orlowska, E., Ed.; Physica-Verlag: Berlin/Heidelberg, Germany, 1999; pp. 445–472. [Google Scholar]
- Crawford, J.M.; Etherington, V.W. A non-deterministic semantics for tractable inference. In Proceedings of the 15th National Conference on Artificial Intelligence, Madison, WI, USA, 26–30 July 1998; MIT Press: Cambridge, UK, 1998; pp. 286–291. [Google Scholar]
- Hamhalter, J. Quantum Measure Theory. In Fundamental Theories of Physics; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 2003; Volume 134. [Google Scholar]
- Greechie, R.J. Orthomodular lattices admitting no states. J. Comb. Theory Ser. A 1971, 10, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Pykacz, J. Quantum Physics, Fuzzy Sets and Logic. Steps towards Many-Valued Interpretation of Quantum Mechanics; Springer Briefs in Physics; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Landsman, K. The logic of quantum mechanics (revisited). In New Spaces in Mathematics and Physics; Anel, M., Catren, G., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Avron, A.; Zamansky, A. Non-deterministic Multi-valued Logics—A Tutorial. In Proceedings of the 2010 40th IEEE International Symposium on Multiple-Valued Logic, Barcelona, Spain, 26–28 May 2010. [Google Scholar] [CrossRef]
- Avron, A.; Zohar, Y. Rexpansions of Non-deterministic Matrices and Their Applications in Non-classical Logics. Rev. Symb. Log. 2019, 12, 173–200. [Google Scholar] [CrossRef]
Deterministic Matrices | N-Matrices | |
---|---|---|
Truth values set | V | V |
Designated values set | ||
Connectives ⟡ | ||
Valuations | Non-dynamic | Possibly dynamic and possibly non-static |
Truth-Functional | Yes | Not necessarily |
Classical systems | Quantum systems | |
---|---|---|
Lattice | Boolean Algebra | Projections lattice |
Truth-tables | Admit deterministic matrices | Only proper N-matrices |
Truth-Values | Admit valuations in | Only valuations in |
Truth-Functional | Yes (for deterministic states) | No |
Satisfy Adequacy | Yes (for deterministic states) | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorge, J.P.; Holik, F. Non-Deterministic Semantics for Quantum States. Entropy 2020, 22, 156. https://doi.org/10.3390/e22020156
Jorge JP, Holik F. Non-Deterministic Semantics for Quantum States. Entropy. 2020; 22(2):156. https://doi.org/10.3390/e22020156
Chicago/Turabian StyleJorge, Juan Pablo, and Federico Holik. 2020. "Non-Deterministic Semantics for Quantum States" Entropy 22, no. 2: 156. https://doi.org/10.3390/e22020156