A New Image Encryption Algorithm Based on Composite Chaos and Hyperchaos Combined with DNA Coding
Abstract
:1. Introduction
2. The Basic Principle
2.1. One-Dimensional Chaotic Mapping
2.1.1. Logistic Chaotic Mapping
2.1.2. Sine Chaotic Mapping
2.2. LLSS Chaotic Mapping
2.3. Qi Hyperchaotic System
2.4. DNA Coding Technique
3. Proposed Encryption Algorithm
- (1)
- In order to resist the selective plaintext attack, the relationship between the initial value of the system and the plaintext is established, and the initial value of the hyperchaotic system , , and is obtained according to the Formula (7) to (10).
- (2)
- In order to obtain better randomness, the first 1500 iterations is removed and four hyperchaotic sequences X, Y, Z and W are generated. To reconstruct the sequence, X and Y determine the encoding mode of DNA, Z determines the operation of DNA, and W represents the decoding mode of DNA.
4. Simulation Results and Security Analysis
4.1. Key Analysis
4.1.1. Key Space
4.1.2. Key Sensitivity
4.2. Statistic Analysis
4.2.1. Gray Histogram
4.2.2. Correlation Analysis of Adjacent Pixels
4.2.3. Information Entropy
4.3. Differential Attack
4.4. Anti-Noise Ability
4.5. Anti-Cropping Ability
4.6. Chosen-Plaintext Attack
4.7. Comparative Analysis with Other Literatures
4.8. Structural Similarity Index (SSIM)
4.9. Computational Complexity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, X.L.; Ye, G.D. An image encryption algorithm based on Time-Delay and random insertion. Entropy 2018, 20, 974. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Hwang, S.O. Chaos-based diffusion for highly autocorrelated data in encryption algorithms. Nonlinear Dyn. 2015, 82, 1839–1850. [Google Scholar] [CrossRef]
- Zhou, H.M. Noise reduction multi-carrier differential chaos shift keying system. J. Circuits Syst. Comput. 2018, 27, 14. [Google Scholar] [CrossRef] [Green Version]
- Budroni, M.A.; Calabrese, I.; Miele, Y. Control of chemical chaos through medium viscosity in a batch ferroin-catalysed Belousov-Zhabotinsky reaction. Phys. Chem. Chem. 2017, 19, 32235–32241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Pan, S.; Cheng, S. Image compression–encryption scheme based on hyper-chaotic system and 2D compressive sensing. Opt. Laser Technol. 2016, 82, 121–133. [Google Scholar] [CrossRef]
- Hancerliogulları, A.; El Hadad, K.M.; Kurt, E. Implementation of a real time analog secure image communication system via a chaotic circuit. Politek. Derg. 2019, 20, 1083–1092. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Bao, L.; Chen, C.L.P. A new 1D chaotic system for image encryption. Signal Process. 2014, 97, 172–182. [Google Scholar] [CrossRef]
- Wu, X.J.; Kan, H.B.; Kurths, J. A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps. Appl. Soft Comput. 2015, 37, 24–39. [Google Scholar] [CrossRef]
- Cao, L.C.; Luo, Y.L.; Qiu, S.H. A perturbation method to the tent map based on Lyapunov exponent and its application. Chin. Phys. B 2015, 24, 78–85. [Google Scholar] [CrossRef]
- Hua, Z.Y.; Zhou, Y.C.; Huang, H.J. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Chanil, P.; Lilian, H. A new color image encryption using combination of the 1D chaotic map. Signal Process. 2017, 138, 129–137. [Google Scholar]
- Sun, S.L. A Novel Hyperchaotic Image Encryption Scheme Based on DNA Encoding, Pixel-Level Scrambling and Bit-Level Scrambling. IEEE Photonics J. 2018, 10, 129–137. [Google Scholar] [CrossRef]
- Adleman, L. Molecular computation of solutions to combinatorial problems. Science 1994, 266, 1021–1024. [Google Scholar] [CrossRef] [Green Version]
- Gehani, A.; Labean, T.; Reif, J. DNA-based Cryptography. Asp. Mol. Comput. 2002, 54, 233–249. [Google Scholar]
- Liu, H.J.; Wang, X.Y.; Kadir, A. Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 2012, 12, 1457–1466. [Google Scholar] [CrossRef]
- Zhang, J.; Huo, D. Image encryption algorithm based on quantum chaotic map and DNA coding. Multimed. Tools Appl. 2019, 78, 15605–15621. [Google Scholar] [CrossRef]
- Chai, X.L.; Fu, X.L.; Gan, Z.H. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process. 2019, 155, 44–62. [Google Scholar] [CrossRef]
- Guan, M.M.; Yang, X.L.; Hu, W.S. Chaotic image encryption algorithm using frequency-domain DNA encoding. IET Image Process. 2019, 119, 105661. [Google Scholar] [CrossRef]
- Yang, Y.G.; Guan, B.W.; Li, J. Image compression-encryption scheme based on fractional order hyperchaotic systems combined with 2D compressed sensing and DNA encoding. Opt. Laser Technol. 2019, 13, 1535–1539. [Google Scholar]
- Huang, C.G.; Cheng, H.; Ding, Q. Logistic chaotic sequence generator based on physical unclonable function. J. Commun. 2019, 40, 186–193. [Google Scholar]
- Bi, C.; Zhang, Q.; Xiang, Y.; Wang, J.M. Bifurcation and attractor of two-dimensional sinusoidal discrete map. Acta Phys. Sin. 2019, 62, 240503. [Google Scholar]
- Qi, G.Y.; Chen, G.R.; Du, S. Analysis of a new chaotic system. Phys. A 2005, 352, 295–308. [Google Scholar] [CrossRef]
- Qi, G.Y.; Chen, G.R. Analysis and circuit implementation of a new 4D chaotic system. Phys. Lett. A 2006, 352, 386–397. [Google Scholar] [CrossRef]
- Xiao, G.Z.; Lu, M.X.; Qin, L.; Lai, X.J. New field of cryptography: DNA cryptography. Chin. Sci. Bull. 2006, 51, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.D.; Crick, F.; Qin, L.; Lai, X.J. A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Hwang, S.O. A secure image encryption scheme based on chaotic maps and affine transformation. Multimed. Tools Appl. 2016, 75, 13951–13976. [Google Scholar] [CrossRef]
- Khan, F.A.; Ahmed, J.; Khan, J.S.; Ahmad, J.; Khan, M.A. A novel image encryption based on Lorenz equation, Gingerbreadman chaotic map and S8 permutation. J. Intell. Fuzzy Syst. 2017. [Google Scholar] [CrossRef]
Title 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
A | 00 | 00 | 01 | 01 | 10 | 10 | 11 | 11 |
T | 11 | 00 | 10 | 10 | 01 | 01 | 00 | 00 |
C | 01 | 10 | 00 | 11 | 00 | 11 | 01 | 10 |
G | 10 | 01 | 11 | 00 | 11 | 00 | 10 | 01 |
XOR | A | G | C | T | + | A | G | C | T | - | C | A | T | G |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | A | G | C | T | A | A | G | C | T | C | C | A | T | G |
G | G | A | T | C | G | G | C | T | A | A | G | C | A | T |
C | C | T | A | G | C | C | T | A | G | T | T | G | C | A |
T | T | C | G | A | T | T | A | G | C | G | A | T | G | C |
Image | Scheme | Horizontal | Vertical | Diagonal |
---|---|---|---|---|
Lena | Original image Cipher image | 0.93767 0.0020306 | 0.97178 0.010543 | 0.9104 0.0019857 |
Couple | Original image Cipher image | 0.9485 0.0031994 | 0.93625 0.0044791 | 0.89823 −0.000148 |
Cameraman | Original image Cipher image | 0.92127 0.0026387 | 0.9633 0.010641 | 0.89823 −0.000148 |
Baboon | Original image Cipher image | 0.90552 −0.014249 | 0.9228 0.0073645 | 0.8557 0.0068203 |
Lake | Original image Cipher image | 0.93051 0.0012594 | 0.95735 −0.0014642 | 0.89664 0.0020329 |
Image | Lena | Couple | Cameraman | Baboon | Lake |
---|---|---|---|---|---|
Original image | 7.5534 | 7.4601 | 7.0097 | 7.3649 | 7.5314 |
Cipher image | 7.9974 | 7.9971 | 7.9970 | 7.9968 | 7.9973 |
Image | Lena | Couple | Cameraman | Baboon | Lake | Average |
---|---|---|---|---|---|---|
NPCR (%) | 99.5987 | 99.6276 | 99.6002 | 99.6170 | 99.6216 | 99.6130 |
UACI (%) | 33.5267 | 33.5208 | 33.3921 | 33.6318 | 33.5344 | 33.5211 |
Noise | Noisy encrypted images | Noise intensities | Decrypted images | PSNR(dB) |
---|---|---|---|---|
Salt and Pepper noise | 0.001 | 41.7268 | ||
0.005 | 34.7189 | |||
0.01 | 33.4257 | |||
0.001 | 35.2165 | |||
Gaussian | 0.005 | 33.8192 | ||
0.01 | 32.483 |
Correlation Coefficients | ||||
---|---|---|---|---|
Entropy | Horizontal | Vertical | Diagonal | |
All black | 0 | — | — | — |
Cipher with all black | 7.9972 | −0.0036 | 0.0261 | 0.0033 |
All white | 0 | — | — | — |
Cipher with all white | 7.9973 | −0.0042 | 0.0187 | −0.0021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Gu, S.; Du, B. A New Image Encryption Algorithm Based on Composite Chaos and Hyperchaos Combined with DNA Coding. Entropy 2020, 22, 171. https://doi.org/10.3390/e22020171
Wan Y, Gu S, Du B. A New Image Encryption Algorithm Based on Composite Chaos and Hyperchaos Combined with DNA Coding. Entropy. 2020; 22(2):171. https://doi.org/10.3390/e22020171
Chicago/Turabian StyleWan, Yujie, Shuangquan Gu, and Baoxiang Du. 2020. "A New Image Encryption Algorithm Based on Composite Chaos and Hyperchaos Combined with DNA Coding" Entropy 22, no. 2: 171. https://doi.org/10.3390/e22020171
APA StyleWan, Y., Gu, S., & Du, B. (2020). A New Image Encryption Algorithm Based on Composite Chaos and Hyperchaos Combined with DNA Coding. Entropy, 22(2), 171. https://doi.org/10.3390/e22020171