On the Irrationality of Being in Two Minds
Abstract
:1. Introduction
2. Bistable Parameters and Bistable Projection Operators
3. Causality
3.1. Inferring Causality
3.2. Causal Strength Criterion
4. Polytopes of Bistable Probabilities
5. The Bell–Wigner Polytope of Irrational Decision Making
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
POV | positive operator valued |
PIIV | pure irrational information volume |
References
- Chater, N.; Oaksford, M. The Probabilistic Mind: Prospects for Bayesian Cognitive Science; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Tauber, S.; Navarro, D.; Perfors, A.; Steyvers, M. Bayesian models of cognition revisited: Setting optimality aside and letting data drive psychological theory. Psychol. Rev. 2017, 124, 410–441. [Google Scholar] [CrossRef] [Green Version]
- Simon, H.A. Theories of bounded rationality. Decis. Organ. 1972, 1, 161–176. [Google Scholar]
- Evans, J.S.B. In two minds: dual-process accounts of reasoning. Trends Cogn. Sci. 2003, 7, 454–459. [Google Scholar] [CrossRef] [Green Version]
- Moreira, C.; Fell, L.; Dehdashti, S.; Bruza, P.; Wichert, A. Towards a Quantum-Like Cognitive Architecture for Decision-Making. arXiv 2019, arXiv:1905.05176. [Google Scholar]
- Khrennikov, A. Ubiquitous Quantum Structure: From Psychology to Finance; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Pothos, E.; Busemeyer, J. A quantum probability explanation for violations of ‘rational’ decision theory. Proc. R. Soc. B 2009, 276, 2171–2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Bruza, P.D.; Wang, Z.; Busemeyer, J.R. Quantum cognition: a new theoretical approach to psychology. Trends Cogn. Sci. 2015, 19, 383–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahneman, D.; Frederick, S. Representativeness revisited: Attribute substitution in intuitive judgment. In Heuristics and Biases: The Psychology of Intuitive Judgment; Gilovich, T., Griffin, D., Kahneman, D., Eds.; Cambridge University Press: Cambridge, UK, 2002; Chapter 2; pp. 49–81. [Google Scholar]
- Gladwin, T.; Figner, B. “Hot” Cognition and Dual Systems: Introduction, Criticisms and Ways forward. In Neuroeconomics, Judgment and Decision Making; Wilhelms, E., Reyna, V., Eds.; Psychology Press: London, UK, 2015; Chapter 8; pp. 157–180. [Google Scholar]
- Evans, J.S.B. On the resolution of conflict in dual process theories of reasoning. Think. Reason. 2007, 13, 321–339. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychol. Rev. 1983, 90, 293. [Google Scholar] [CrossRef]
- Conte, E.; Khrennikov, A.; Todarello, O.; De Robertis, R.; Federici, A.; Zbilut, J. On the Possibility That We Think in a Quantum Mechanical Manner: An Experimental Verification of Existing Quantum Interference Effects In Cognitive Anomaly of Conjunction Fallacy. Chaos Complex. Lett. 2011, 4, 123–136. [Google Scholar]
- Busemeyer, J.; Pothos, E.; Franco, R.; Trueblood, J. A quantum theoretical explanation for probability judgment errors. Psychol. Rev. 2011, 118, 193–218. [Google Scholar] [CrossRef] [Green Version]
- Honda, H.; Matsuka, T.; Ueda, K. Memory-based simple heuristics as attribute substitution: Competitive tests of binary choice inference models. Cogn. Sci. 2017, 41, 1093–1118. [Google Scholar] [CrossRef] [PubMed]
- Costello, F.; Watts, P. Surprisingly rational: Probability theory plus noise explains biases in judgment. Psychol. Rev. 2014, 121, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, F.; Watts, P. People’s conditional probability judgments follow probability theory (plus noise). Cogn. Psychol. 2016, 89, 106–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diederich, A.; Trueblood, J.S. A dynamic dual process model of risky decision making. Psychol. Rev. 2018, 125, 270. [Google Scholar] [CrossRef]
- Hoffman, D.D.; Prakash, C. Objects of consciousness. Front. Psychol. 2014, 5, 577. [Google Scholar] [CrossRef] [Green Version]
- Costello, F.; Watts, P. Explaining high conjunction fallacy rates: The probability theory plus noise account. J. Behav. Decis. Mak. 2017, 30, 304–321. [Google Scholar] [CrossRef]
- Costello, F.; Watts, P.; Fisher, C. Surprising rationality in probability judgment: Assessing two competing models. Cognition 2018, 170, 280–297. [Google Scholar] [CrossRef]
- Costello, F.; Watts, P. The rationality of illusory correlation. Psychol. Rev. 2019, 126, 437. [Google Scholar] [CrossRef]
- Costello, F.; Watts, P. Invariants in probabilistic reasoning. Cogn. Psychol. 2018, 100, 1–16. [Google Scholar] [CrossRef]
- Yearsley, J.M.; Trueblood, J.S. A quantum theory account of order effects and conjunction fallacies in political judgments. Psychon. Bull. Rev. 2018, 25, 1517–1525. [Google Scholar] [CrossRef] [Green Version]
- Busch, P. Unsharp reality and joint measurements for spin observables. Phys. Rev. D 1986, 33, 2253. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.C.; Spekkens, R.W.; Wiseman, H.M. Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity. Phys. Rep. 2011, 506, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhou, T. Diagnosing steerability of a bipartite state with the non-steering threshold. arXiv 2019, arXiv:1904.04829. [Google Scholar]
- Trueblood, J.S.; Yearsley, J.M.; Pothos, E.M. A quantum probability framework for human probabilistic inference. J. Exp. Psychol. Gen. 2017, 146, 1307. [Google Scholar] [CrossRef]
- Allen, J.M.A.; Barrett, J.; Horsman, D.C.; Lee, C.M.; Spekkens, R.W. Quantum common causes and quantum causal models. Phys. Rev. X 2017, 7, 031021. [Google Scholar] [CrossRef] [Green Version]
- Einhorn, H.J.; Hogarth, R.M. Confidence in judgment: Persistence of the illusion of validity. Psychol. Rev. 1978, 85, 395. [Google Scholar] [CrossRef]
- Hassin, R.R.; Bargh, J.A.; Uleman, J.S. Spontaneous causal inferences. J. Exp. Soc. Psychol. 2002, 38, 515–522. [Google Scholar] [CrossRef]
- Matute, H.; Blanco, F.; Yarritu, I.; Diaz-Lago, M.; Vadillo, M.; Barberia, I. Illusions of causality: How they bias our everyday thinking and how they could be reduced. Front. Psychol. 2015, 6, 888. [Google Scholar] [CrossRef] [Green Version]
- Rehder, B. Independence and dependence in humal causal reasoning. Cogn. Psychol. 2014, 72, 54–107. [Google Scholar] [CrossRef]
- Weinberger, N. Faithfulness, Coordination and Causal Coincidences. Erkenntnis 2018, 83, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Icard, T.F.; Kominsky, J.F.; Knobe, J. Normality and actual causal strength. Cognition 2017, 161, 80–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.W.; Novick, L.R. Covariation in natural causal induction. Psychol. Rev. 1992, 99, 365. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, H.M.; Ward, W.C. Judgment of contingency between responses and outcomes. Psychol. Monogr. Gen. Appl. 1965, 79, 1. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, T.L.; Tenenbaum, J.B. Structure and strength in causal induction. Cogn. Psychol. 2005, 51, 334–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitowsky, I. George Boole’s ‘conditions of possible experience’ and the quantum puzzle. Br. J. Philos. Sci. 1994, 45, 95–125. [Google Scholar] [CrossRef]
- Friston, K.; Schwartenbeck, P.; FitzGerald, T.; Moutoussis, M.; Behrens, T.; Dolan, R.J. The anatomy of choice: active inference and agency. Front. Hum. Neurosci. 2013, 7, 598. [Google Scholar] [CrossRef] [Green Version]
- Pitowsky, I. Correlation polytopes: their geometry and complexity. Math. Program. 1991, 50, 395–414. [Google Scholar] [CrossRef]
- Vourdas, A. Probabilistic inequalities and measurements in bipartite systems. J. Phys. A Math. Theor. 2019, 52, 085301. [Google Scholar] [CrossRef] [Green Version]
- Zwilling, C.; Cavagnaro, D.; Regenwetter, M.; Lim, S.; Fields, B.; Zhang, Y. QTEST 2.1: Quantitative testing of theories of binary choice using Bayesian inference. J. Math. Psychol. 2019, 91, 176–194. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehdashti, S.; Fell, L.; Bruza, P. On the Irrationality of Being in Two Minds. Entropy 2020, 22, 174. https://doi.org/10.3390/e22020174
Dehdashti S, Fell L, Bruza P. On the Irrationality of Being in Two Minds. Entropy. 2020; 22(2):174. https://doi.org/10.3390/e22020174
Chicago/Turabian StyleDehdashti, Shahram, Lauren Fell, and Peter Bruza. 2020. "On the Irrationality of Being in Two Minds" Entropy 22, no. 2: 174. https://doi.org/10.3390/e22020174
APA StyleDehdashti, S., Fell, L., & Bruza, P. (2020). On the Irrationality of Being in Two Minds. Entropy, 22(2), 174. https://doi.org/10.3390/e22020174