The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes
Abstract
:1. Introduction
2. Effective Electric Field in Bulk of Colloidal Polyelectrolyte
2.1. Electric Field in Absence of Current
2.2. Electric Field in Presence of Current
3. Ohmic Transport in a Weak Colloidal Polyelectrolyte
3.1. Approximation of the Conducting Spheres
3.2. Approximation of the Conducting Thick-Walled Spheres
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lucas, I.T.; Durand-Vidal, S.; Bernard, O.; Dahirel, V.; Dubois, E.; Dufrêche, J.F.; Gourdin-Bertin, S.; Jardat, M.; Meriguet, G.; Roger, G. Influence of the volume fraction on the electrokinetic properties of maghemite nanoparticles in suspension. Mol. Phys.: Int. J. Interface Chem. Phys. 2014, 112, 1463–1471. [Google Scholar] [CrossRef] [Green Version]
- Salez, T.J.; Huang, B.; Rietjens, M.; Bonetti, M.; Wiertel-Gasquet, C.; Roger, M.; Filomeno, C.L.; Dubois, E.; Perzynski, R.; Nakamae, S. Can charged colloidal particles increase the thermoelectric energy conversion efficiency? Phys. Chem. Chem. Phys. 2017, 19, 9409–9416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shklovski, B.I.; Efros, A.L. Electronic Properties of Doped Semiconductors, 1st ed.; Springer: Berlin, Germany, 1984; pp. 94–107. [Google Scholar]
- Derjaguin, B.V.; Landau, L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chem. URSS 1941, 14, 633–662. [Google Scholar] [CrossRef]
- Verwey, E.; Overbeek, J. Theory of the Stability of Lyophobic Colloids, 1948 ed.; Elsevier: Amsterdam, The Netherlands, 1948; pp. 131–136. [Google Scholar]
- Riedl, J.C.; Akhavan Kazemi, M.A.; Cousin, F.; Dubois, E.; Fantini, S.; Lois, S.; Perzynski, R.; Peyre, V. Colloidal dispersions of oxide nanoparticles in ionic liquids: Elucidating the key parameters. Nanoscale Adv. 2020. [Google Scholar] [CrossRef] [Green Version]
- Bacri, J.C.; Perzynski, R.; Salin, D.; Cabuil, V.; Massart, R. Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater. 1990, 85, 27–32. [Google Scholar] [CrossRef]
- Dubois, E.; Cabuil, V.; Boué, F.; Perzynski, R. Structural analogy between aqueous and oily magnetic fluids. J. Chem. Phys. 1999, 111, 7147–7160. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics. In Course of Theoretical Physics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 5, pp. 276–278. [Google Scholar]
- Rotenberg, B.; Dufrêche, J.F.; Turq, P. Frequency-dependent dielectric permittivity of salt-free charged lamellar systems. J. Chem. Phys. B 2005, 123, 154902–154903. [Google Scholar] [CrossRef] [PubMed]
- Durand-Vidal, S.; Jardat, M.; Dahirel, V.; Bernard, O.; Perrigaud, K.; Turq, P. Determining the radius and the apparent charge of a micelle from electrical conductivity measurements by using a transport theory: Explicit equations for practical use. J. Chem. Phys. B 2006, 110, 15542–15547. [Google Scholar] [CrossRef] [PubMed]
- Jardat, M.; Dahirel, V.; Durand-Vidal, S.; Lucas, I.; Bernard, O.; Turq, P. Effective charges of micellar species obtained from Brownian dynamics simulations and from an analytical transport theory. Mol. Phys. 2004, 104, 3667–3674. [Google Scholar] [CrossRef]
- Heltner, P.; Papir, Y.; Krieger, I. Diffraction of light by nonaqueous ordered suspensions. J. Phys. Chem. 1971, 75, 1881–1886. [Google Scholar] [CrossRef]
- Kose, A.; Ozake, T.; Takano, K.; Kobayschi, Y.; Hachisu, S. Direct observation of ordered latex suspension by metallurgical microscope. J. Colloid Interface Sci. 1973, 44, 330–338. [Google Scholar] [CrossRef]
- Williams, R.; Crandall, R. The structure of crystallized suspensions of polystyrene spheres. Phys. Lett. A 1974, 48, 225–226. [Google Scholar] [CrossRef]
- Alexander, S.; Chaikin, P.; Grant, P.; Morales, G.; Pincus, P. Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory. J. Chem. Phys. 1984, 80, 5776–5781. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics: Vol. 6, Fluid Mechanics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; p. 46. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1999; p. 114. [Google Scholar]
- Dykhne, A.M. Conductivity of a Two-Dimensional Two-Phase System. Sov. JETP 1971, 32, 63–65. [Google Scholar]
- Onsager, L. On the theory of electrolytes. Physica Z 1927, 28, 277–298. [Google Scholar]
- Debye, P.; Huckel, E. The theory of the electrolyte II-The border law for electrical conductivity. Physica Z 1923, 24, 305–325. [Google Scholar]
- Lifshitz, E.M.; Pitaevskii, L.P. Physical Kinetics: Course of Theoretical Physics—Volume 10, 1st ed.; Butterworth-Heinenann Ltd.: London, UK, 2002; p. 125. [Google Scholar]
- Grosberg, A.; Nguyen, T.; Shklovskii, B. The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 2002, 74, 329–345. [Google Scholar] [CrossRef]
- Robinson, R.; Stokes, R. Electrolyte Solutions, 1959 ed.; Butterworths Scientific Publications: London, UK, 1959; p. 119. [Google Scholar]
- Lizana, L.; Grossberg, A. Exact expressions for the mobility and electrophoretic mobility of a weakly charged sphere in a simple electrolyte. Europhys. Lett. 2013, 104, 68004–68009. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chikina, I.; Shikin, V.; Varlamov, A. The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes. Entropy 2020, 22, 225. https://doi.org/10.3390/e22020225
Chikina I, Shikin V, Varlamov A. The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes. Entropy. 2020; 22(2):225. https://doi.org/10.3390/e22020225
Chicago/Turabian StyleChikina, Ioulia, Valeri Shikin, and Andrey Varlamov. 2020. "The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes" Entropy 22, no. 2: 225. https://doi.org/10.3390/e22020225
APA StyleChikina, I., Shikin, V., & Varlamov, A. (2020). The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes. Entropy, 22(2), 225. https://doi.org/10.3390/e22020225