Assessing and Predicting the Water Resources Vulnerability under Various Climate-Change Scenarios: A Case Study of Huang-Huai-Hai River Basin, China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Research Area
2.2. Data Sources
2.3. Methodology
2.3.1. Evaluation Index System
2.3.2. Index Reduction Method
2.3.3. Random Forest and Artificial Neural Network Models
3. Result and Discussion
3.1. Dimension Reduction of Evaluation Index
3.2. Selection of Evaluation and Prediction Models
3.2.1. Optimization of Model Parameters
3.2.2. Evaluation of Fitting Accuracy of Models
3.3. Assessment of Water Resources Vulnerability in Huang-Huai-Hai Basin
3.3.1. Trend Analysis of the WVI in Huang-Huai-Hai Basin
3.3.2. Cause Identification of Vulnerability in Huang-Huai-Hai Basin
3.4. Scenario Prediction of WRV in Huang-Huai-Hai Basin
3.4.1. Water Resources Vulnerability Prediction under Scenario 1
3.4.2. Water Resources Vulnerability Prediction under Scenario 2
3.4.3. Water Resources Vulnerability Prediction under Scenario 3
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Scenario Prediction Data of Indicators in the Huang-Huai-Hai River Basin
River Basin | Scene | Year | A1 | A6 | A7 | A8 | B2 | B3 | B4 | B5 | C3 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Huang River Basin | Scene1 | 2020 | 8.84 | 0.30 | 459.26 | 398.00 | 2.60 | 0.80 | 0.69 | 0.05 | 0.10 | 0.73 | 0.83 | 0.97 |
2030 | 8.43 | 0.30 | 430.71 | 361.00 | 2.00 | 0.95 | 0.76 | 0.06 | 0.10 | 0.68 | 0.95 | 1.06 | ||
Scene2 | 2020 | 8.29 | 0.34 | 459.26 | 419.00 | 2.99 | 0.56 | 0.63 | 0.04 | 0.11 | 0.68 | 0.67 | 0.88 | |
2030 | 8.16 | 0.36 | 430.71 | 373.00 | 2.99 | 0.67 | 0.69 | 0.06 | 0.11 | 0.66 | 0.76 | 0.97 | ||
Scene3 | 2020 | 8.54 | 0.38 | 486.96 | 465.00 | 5.00 | 0.48 | 0.56 | 0.03 | 0.13 | 0.48 | 0.50 | 0.79 | |
2030 | 7.56 | 0.40 | 456.69 | 465.00 | 5.00 | 0.48 | 0.62 | 0.05 | 0.13 | 0.48 | 0.57 | 0.87 | ||
Huai River Basin | Scene1 | 2020 | 32.64 | 0.40 | 275.38 | 256.50 | 5.00 | 0.80 | 0.51 | 0.02 | 0.07 | 0.58 | 0.74 | 0.31 |
2030 | 31.02 | 0.34 | 278.96 | 234.00 | 3.37 | 0.95 | 0.61 | 0.03 | 0.04 | 0.74 | 1.00 | 0.34 | ||
Scene2 | 2020 | 32.04 | 0.42 | 327.06 | 286.00 | 7.36 | 0.72 | 0.46 | 0.02 | 0.08 | 0.55 | 0.67 | 0.28 | |
2030 | 29.46 | 0.38 | 331.30 | 256.00 | 5.00 | 0.86 | 0.56 | 0.03 | 0.04 | 0.67 | 0.90 | 0.31 | ||
Scene3 | 2020 | 31.19 | 0.47 | 339.94 | 316.00 | 9.70 | 0.64 | 0.41 | 0.02 | 0.09 | 0.52 | 0.60 | 0.26 | |
2030 | 28.75 | 0.42 | 344.35 | 316.00 | 10.80 | 0.76 | 0.50 | 0.03 | 0.05 | 0.59 | 0.70 | 0.28 | ||
Hai River Basin | Scene1 | 2020 | 10.13 | 0.97 | 353.04 | 249.50 | 2.32 | 0.80 | 0.40 | 0.06 | 0.19 | 0.86 | 0.20 | 0.26 |
2030 | 10.45 | 0.90 | 337.09 | 232.00 | 2.00 | 0.95 | 0.44 | 0.08 | 0.15 | 0.96 | 0.80 | 0.33 | ||
Scene2 | 2020 | 9.30 | 1.00 | 357.20 | 299.50 | 2.87 | 0.48 | 0.36 | 0.05 | 0.22 | 0.78 | 0.18 | 0.23 | |
2030 | 9.69 | 1.00 | 341.06 | 276.00 | 2.87 | 0.57 | 0.40 | 0.08 | 0.17 | 0.87 | 0.72 | 0.30 | ||
Scene3 | 2020 | 9.76 | 1.13 | 367.60 | 323.00 | 5.00 | 0.29 | 0.33 | 0.04 | 0.28 | 0.70 | 0.16 | 0.21 | |
2030 | 9.61 | 1.10 | 350.99 | 323.00 | 5.00 | 0.48 | 0.36 | 0.06 | 0.22 | 0.77 | 0.56 | 0.27 |
Appendix A1. Water Production Modulus A1
Appendix A2. Utilization Rate of Groundwater Resources A6
Appendix A3. Per Capita Water Consumption A7
Appendix A4. Water Consumption per Mu A8
Appendix A5. Waste Water Discharge per 10,000 Yuan GDP B2
Appendix A6. Qualification Rate of Water Quality in Water Function Area B3
Appendix A7. Qualification Rate of Water Quality in River Basin B4
Appendix A8. Water Consumption for Ecosystem B5
Appendix A9. Proportion of Disaster Area Caused by Drought and Flood C3
Appendix A10. Proportion of Population under Dike Protection C6
Appendix A11. Control Rate of Soil Erosion C7
Appendix A12. Regulation Capacity of Water Conservancy Project C8
References
- Babel, M.S.; Wahid, S.M. Freshwater under Threat: South Asia Vulnerability Assessment of Freshwater Resources to Environmental Change; United Nations Environment Programme and Asian Institute of Technology: Bangkok, Thailand, 2009. [Google Scholar]
- Long, W.; Jun, X.; Si, H. Decadal climate variability and vulnerability of water resources in arid regions of Northwest China. Environ. Earth Sci. 2015, 73, 6539–6552. [Google Scholar]
- Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2008; pp. 3–15. [Google Scholar]
- Gang, W.; Yan, D.; He, X.; Liu, S.; Zhang, C.; Xing, Z.; Kan, G.; Qin, T.; Ren, M.; Li, H. Trends in extreme temperature indices in Huang-Huai-Hai River Basin of China during 1961–2014. Theor. Appl. Climatol. 2018, 134, 51–65. [Google Scholar] [CrossRef]
- Shi, X.; Qin, T.; Yan, D.; Sun, R.; Cao, S.; Jing, L.; Wang, Y.; Gong, B. Analysis of the Changes in the Water Yield Coefficient over the Past 50 Years in the Huang-Huai-Hai River Basin, China. Adv. Meteorol. 2018, 2018, 6302853. [Google Scholar] [CrossRef]
- Albinet, M.; Margat, J. Cartographie de la vulnérabilité à la pollution des nappes d’eau souterraine. Bull. BRGM 1970, 4, 13–22. [Google Scholar]
- Brouwer, F.; Falkenmark, M. Climate-induced water availability changes in Europe. Environ. Monit. Assess. 1989, 13, 75–98. [Google Scholar] [CrossRef] [PubMed]
- Mirauda, D.; Ostoich, M. Surface water vulnerability assessment applying the integrity model as a decision support system for quality improvement. Environ. Impact Assess. Rev. 2011, 31, 161–171. [Google Scholar] [CrossRef]
- Cai, J.; Varis, O.; Yin, H. China’s water res1313ources vulnerability: A spatio-temporal analysis during 2003–2013. J. Clean. Prod. 2017, 142, 2901–2910. [Google Scholar] [CrossRef]
- Millan, R.; Rignot, E.; Mouginot, J.; Wood, M.; Bjørk, A.A.; Morlighem, M. Vulnerability of southeast greenland glaciers to warm atlantic water from operation icebridge and ocean melting greenland data. Geophys. Res. Lett. 2018, 45, 2688–2696. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Tsitsifli, S.; Papadopoulou, A.; Curk, B.C.; Karleusa, B. Water resources vulnerability assessment in the Adriatic Sea region: The case of Corfu Island. Environ. Sci. Pollut. Res. 2017, 24, 20173–20186. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Sohns, A.; Ford, J.; Riva, M.; Robinson, B.; Adamowski, J. Water Vulnerability in Arctic Households: A Literature-based Analysis. Arctic 2019, 72, 300–316. [Google Scholar] [CrossRef]
- Sohns, A.; Ford, J.; Robinson, B.E.; Adamowski, J. What conditions are associated with household water vulnerability in the Arctic? Environ. Sci. Policy 2019, 97, 95–105. [Google Scholar] [CrossRef]
- Kliskey, A.; Williams, P.; Abatzoglou, J.T.; Alessa, L.; Lammers, R.B. Enhancing a community-based water resource tool for assessing environmental change: The arctic water resources vulnerability index revisited. Environ. Syst. Decis. 2019, 39, 183–197. [Google Scholar] [CrossRef]
- Perveen, S.; James, L.A. Scale invariance of water stress and scarcity indicators: Facilitating cross-scale comparisons of water resources vulnerability. Appl. Geogr. 2011, 31, 321–328. [Google Scholar] [CrossRef]
- Xia, J.; Qiu, B.; Li, Y. Water resources vulnerability and adaptive management in the Huang, Huai and Hai river basins of China. Water Int. 2012, 37, 523–536. [Google Scholar] [CrossRef]
- France, R.L.; Pardy, G. Spatially-Explicit, Exposure-Based Assessment of Surface Water Vulnerability from Land Use Threats for Time-Efficient and Cost-Effective Watershed Development Planning. J. Geosci. Environ. Prot. 2018, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.S.; Abdulai, P.J.; Park, H.; Kim, Y.; Ahn, S.R.; Kim, S.J. Multi-criteria assessment of spatial robust water resource vulnerability using the TOPSIS method coupled with objective and subjective weights in the Han River basin. Sustainability 2017, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Motevalli, A.; Moradi, H.R.; Javadi, S. A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). J. Hydrol. 2018, 557, 753–773. [Google Scholar] [CrossRef]
- Houghton, J.T.; Meiro Filho, L.G.; Callander, B.A.; Harris, N.; Kattenburg, A.; Maskell, K. Climate Change 1995: The Science of Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 1996; pp. 572–584. [Google Scholar]
- Charles, J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Farley, K.A.; Tague, C.; Grant, G.E. Vulnerability of water supply from the Oregon Cascades to changing climate: Linking science to users and policy. Global Environ. Chang. 2011, 21, 110–122. [Google Scholar] [CrossRef]
- Kim, J.S.; Jain, S.; Lee, J.H.; Chen, H.; Park, S.Y. Quantitative vulnerability assessment of water quality to extreme drought in a changing climate. Ecol. Indic. 2019, 103, 688–697. [Google Scholar] [CrossRef]
- Yoon, H.; Sauri, D.; Domene, E. The water-energy vulnerability in the Barcelona metropolitan area. Energy Build. 2019, 199, 176–189. [Google Scholar] [CrossRef]
- Chen, J.; Yu, X.; Qiu, L.; Deng, M.; Dong, R. Study on Vulnerability and Coordination of Water-Energy-Food System in Northwest China. Sustainability 2018, 10, 3712. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Luo, X.; Cao, J.; Chen, J.; Ning, L.; Hong, S. Impact and assessment of climate change on the water resources vulnerability in the Eastern China monsoon region. Prog. Inquis. Mutat. Clim. 2015, 1, 8–14. [Google Scholar]
- Xia, J.; Shi, W.; Chen, J.; Hong, S. Study on vulnerability of water resources and its adaptive regulation under changing environment: A case of Haihe River basin. Water Resour. Hydropower Eng. 2015, 6, 27–33. [Google Scholar]
- Yan, D.; Xu, T.; Girma, A. Regional Correlation between Precipitation and Vegetation in the Huang-Huai-Hai River Basin, China. Water 2017, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-D.; Yan, D.-H.; Wang, Y.-C.; Lu, F.; Wu, D. Changes in extreme precipitation in the Huang-Huai-Hai River basin of China during 1960-2010. Theor. Appl. Climatol. 2015, 120, 195–209. [Google Scholar] [CrossRef]
- Yin, J.; Yan, D.; Yang, Z.; Yuan, Z.; Yuan, Y.; Zhang, C. Projection of extreme precipitation in the context of climate change in Huang-Huai-Hai region, China. J. Earth Syst. Sci. 2016, 125, 417–429. [Google Scholar] [CrossRef]
- Huang, R.; Yan, D.; Liu, S. Combined characteristics of drought on multiple time scales in Huang-Huai-Hai River basin. Arab. J. Geosci. 2015, 8, 4517–4526. [Google Scholar] [CrossRef]
- Lu, G.; Xiao, H.; Wu, Z.; Zhang, S.; Li, Y. Assessing the Impacts of Future Climate Change on Hydrology in Huang-Huai-Hai Region in China Using the PRECIS and VIC Models. J. Hydrol. Eng. 2013, 18, 1077–1087. [Google Scholar] [CrossRef]
- Wang, G.Q.; Zhang, J.Y. Variation of water resources in the Huang-huai-hai areas and adaptive strategies to climate change. Quatern. Int. 2015, 380, 180–186. [Google Scholar] [CrossRef]
- The Central People’s Government of the People’s Republic of China. Available online: http://www.gov.cn/zhuanti/2015-06/13/content_2878992.htm (accessed on 5 March 2020). (In Chinese)
- Xia, J.; Li, Y. Vulnerability and Adaptability of Water Resources in China under the Impact of Climate Change, 1st ed.; Science Press: Beijing, China, 2016; pp. 135–329. ISBN 978-7-03-047525-1. [Google Scholar]
- Qiting, Z.; Desheng, H. Research on the Strictest Water Resources Management System, 1st ed.; Science Press: Beijing, China, 2016; pp. 20–155. [Google Scholar]
- Xiaohua, Y.; Xinghui, X. Vulnerability Assessment and Regulation Management of Basin Water Resources System under the Background of Climate Change, 1st ed.; Science Press: Beijing, China, 2016; pp. 35–205. [Google Scholar]
- Chen, Y.; Feng, Y.; Zhang, F.; Wang, L. Assessing Water Resources Vulnerability by Using a Rough Set Cloud Model: A Case Study of the Huai River Basin, China. Entropy 2019, 21, 14. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, Z. Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 1997, 99, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Zabihi, M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Behzadfar, M. GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ. Earth Sci. 2016, 75, 665. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Y. Vulnerability prediction of basin water resources on rough set and BP neural network: A case of Huai River basin. Resour. Environ. Yangtze Basin 2016, 25, 1317–1327. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Motagh, M. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS J. Photogramm. 2017, 130, 13–31. [Google Scholar] [CrossRef]
- Lai, C.; Chen, X.; Wang, Z.; Xu, C.Y.; Yang, B. Rainfall-induced landslide susceptibility assessment using random forest weight at basin scale. Hydrol. Res. 2018, 49, 1363–1378. [Google Scholar] [CrossRef]
- Sadler, J.M.; Goodall, J.L.; Morsy, M.M.; Spencer, K. Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest. J. Hydrol. 2018, 559, 43–55. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H. Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef]
- Zhao, G.; Pang, B.; Xu, Z.; Yue, J.; Tu, T. Mapping flood susceptibility in mountainous areas on a national scale in China. Sci. Total Environ. 2018, 615, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Shiri, J. Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. J. Hydrol. 2018, 561, 737–750. [Google Scholar] [CrossRef]
- Ali, M.; Prasad, R.; Xiang, Y.; Yaseen, Z.M. Complete ensemble empirical mode decomposition hybridized with random forest and Kernel ridge regression model for monthly rainfall forecasts. J. Hydrol. 2020, 584, 124647. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2016, 188, 44. [Google Scholar] [CrossRef] [PubMed]
- Möhle, S.; Bründl, M.; Beierle, C. Modeling a System for Decision Support in Snow Avalanche Warning Using Balanced Random Forest and Weighted Random Forest. In Proceedings of the 16th International Conference Artificial Intelligence, Methodology, Systems, and Applications AIMSA, Varna, Bulgaria, 11–13 September 2014; pp. 80–91. [Google Scholar]
- Zema, D.A.; Lucas-Borja, M.E.; Fotia, L.; Rosaci, D.; Sarnè, G.M.; Zimbone, S.M. Predicting the hydrological response of a forest after wildfire and soil treatments using an Artificial Neural Network. Comput. Electron. Agric. 2020, 170, 105280. [Google Scholar] [CrossRef]
- Tan, Q.F.; Lei, X.H.; Wang, X.; Wang, H.; Wen, X.; Ji, Y.; Kang, A.Q. An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. J. Hydrol. 2018, 567, 767–780. [Google Scholar] [CrossRef]
- Sun, M.; Li, X.; Kim, G. Precipitation analysis and forecasting using singular spectrum analysis with artificial neural networks. Cluster Comput. 2019, 22, 12633–12640. [Google Scholar] [CrossRef]
- Nabipour, N.; Dehghani, M.; Mosavi, A.; Shamshirband, S. Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks. IEEE Access 2020, 8, 15210–15222. [Google Scholar] [CrossRef]
- Afan, H.A.; El-Shafie, A.; Yaseen, Z.M.; Hameed, M.M.; Mohtar, W.H.M.W.; Hussain, A. ANN Based Sediment Prediction Model Utilizing Different Input Scenarios. Water Resour. Manag. 2015, 29, 1231–1245. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, H.; Cai, Z.; Zhou, X.; Peng, C. The response of the net primary production of Moso bamboo forest to the on and Off-year management: A case study in Anji County, Zhejiang, China. Forest Ecol. Manag. 2018, 40, 1–7. [Google Scholar] [CrossRef]
Evaluation Index System | Attribute | ||
---|---|---|---|
WSVI | Pressure | Water production modulus A1 | positive |
Variation coefficient of annual precipitation A2 | negative | ||
State | Proportion of groundwater supply A3 | negative | |
Change rate of annual precipitation A4 | positive | ||
Impact | Utilization rate of surface water resources A5 | negative | |
Utilization rate of groundwater resources A6 | negative | ||
Response | Per capita water consumption A7 | negative | |
Water consumption per mu A8 | negative | ||
WPVI | Pressure | Population density B1 | negative |
Waste water discharge per 10,000 yuan GDP B2 | negative | ||
State | Qualification rate of water quality in water function area B3 | positive | |
Qualification rate of water quality in river basin B4 | positive | ||
Impact | Water consumption for ecosystem B5 | positive | |
Qualified decline rate of water quality B6 | negative | ||
Response | COD emission per 10,000 people B7 | negative | |
Ammonia and nitrogen emission per 10,000 people B8 | negative | ||
WDVI | Pressure | Population carrying capacity per 10,000 m3 water C1 | negative |
Reclamation index C2 | negative | ||
State | Proportion of disaster area caused by drought and flood C3 | negative | |
Water yield coefficient C4 | positive | ||
Impact | Proportion of effective irrigation area C5 | positive | |
Proportion of population under dike protection C6 | positive | ||
Response | Control rate of soil erosion C7 | positive | |
Regulation capacity of water conservancy project C8 | positive |
Interval Value of Vulnerability | Grade of Vulnerability | |||
---|---|---|---|---|
0 ≤ WVI < 0.133 | 0 ≤ WSVI < 0.049 | 0 ≤ WPVI < 0.046 | 0 ≤ WDVI < 0.039 | No vulnerability (1st level) |
0.133 ≤ WVI < 0.247 | 0.049 ≤ WSVI < 0.096 | 0.046 ≤ WPVI < 0.077 | 0.039 ≤ WDVI < 0.074 | Mild vulnerability (2nd level) |
0.247 ≤ WVI < 0.369 | 0.096 ≤ WSVI < 0.150 | 0.077 ≤ WPVI < 0.109 | 0.074 ≤ WDVI < 0.110 | Moderate to low vulnerability (3rd level) |
0.369 ≤ WVI < 0.483 | 0.150 ≤ WSVI < 0.195 | 0.109 ≤ WPVI < 0.141 | 0.110 ≤ WDVI < 0.147 | Moderate vulnerability (4th level) |
0.483 ≤ WVI < 0.601 | 0.195 ≤ WSVI < 0.240 | 0.141 ≤ WPVI < 0.178 | 0.147 ≤ WDVI < 0.183 | Moderate to high vulnerability (5th level) |
0.601 ≤ WVI < 0.731 | 0.240 ≤ WSVI < 0.285 | 0.178 ≤ WPVI < 0.225 | 0.183 ≤ WDVI < 0.222 | Highly vulnerability (6th level) |
0.731 ≤ WVI < 1 | 0.285 ≤ WSVI < 1 | 0.225 ≤ WPVI < 1 | 0.222 ≤ WDVI < 1 | Extreme vulnerability (7th level) |
Model | MSE | NMSE |
---|---|---|
RF | 0.0008 | 0.2197 |
ANN | 0.0016 | 0.6124 |
River Basin | Year | WVI | WVI (Level) | WSVI | WSVI (Level) | WPVI | WPVI (Level) | WDVI | WDVI (Level) |
---|---|---|---|---|---|---|---|---|---|
Huang River Basin | 2000 | 0.4529 | 4 | 0.1537 | 4 | 0.1749 | 5 | 0.1269 | 4 |
2001 | 0.4570 | 4 | 0.1509 | 4 | 0.1794 | 6 | 0.1251 | 4 | |
2002 | 0.4585 | 4 | 0.1579 | 4 | 0.1851 | 6 | 0.1228 | 4 | |
2003 | 0.4432 | 4 | 0.1379 | 3 | 0.1757 | 5 | 0.1228 | 4 | |
2004 | 0.4313 | 4 | 0.1476 | 3 | 0.1652 | 5 | 0.1197 | 4 | |
2005 | 0.3881 | 4 | 0.1313 | 3 | 0.1569 | 5 | 0.1107 | 4 | |
2006 | 0.4186 | 4 | 0.1492 | 3 | 0.1576 | 5 | 0.1252 | 4 | |
2007 | 0.3574 | 3 | 0.1096 | 3 | 0.1458 | 5 | 0.0970 | 3 | |
2008 | 0.3627 | 3 | 0.1126 | 3 | 0.1457 | 5 | 0.0996 | 3 | |
2009 | 0.3398 | 3 | 0.0962 | 2 | 0.1390 | 4 | 0.0934 | 3 | |
2010 | 0.3285 | 3 | 0.0966 | 3 | 0.1355 | 4 | 0.0950 | 3 | |
2011 | 0.3286 | 3 | 0.1030 | 3 | 0.1201 | 4 | 0.1131 | 4 | |
2012 | 0.3169 | 3 | 0.0944 | 2 | 0.1112 | 4 | 0.1061 | 3 | |
2013 | 0.3262 | 3 | 0.0969 | 3 | 0.1116 | 4 | 0.1098 | 3 | |
2014 | 0.3310 | 3 | 0.0987 | 3 | 0.1076 | 3 | 0.1173 | 4 | |
2015 | 0.3716 | 4 | 0.1218 | 3 | 0.1071 | 3 | 0.1336 | 4 | |
Huai River Basin | 2000 | 0.4825 | 4 | 0.1230 | 3 | 0.2078 | 6 | 0.1466 | 5 |
2001 | 0.5205 | 5 | 0.1630 | 4 | 0.2054 | 6 | 0.1592 | 5 | |
2002 | 0.4638 | 4 | 0.1308 | 3 | 0.1987 | 6 | 0.1407 | 4 | |
2003 | 0.4544 | 4 | 0.1228 | 3 | 0.2043 | 6 | 0.1383 | 4 | |
2004 | 0.4447 | 4 | 0.1248 | 3 | 0.1930 | 6 | 0.1333 | 4 | |
2005 | 0.4346 | 4 | 0.1218 | 3 | 0.1871 | 6 | 0.1325 | 4 | |
2006 | 0.4246 | 4 | 0.1063 | 3 | 0.1765 | 5 | 0.1339 | 4 | |
2007 | 0.4036 | 4 | 0.1033 | 3 | 0.1779 | 5 | 0.1270 | 4 | |
2008 | 0.3917 | 4 | 0.1016 | 3 | 0.1644 | 5 | 0.1287 | 4 | |
2009 | 0.4318 | 4 | 0.1132 | 3 | 0.1682 | 5 | 0.1399 | 4 | |
2010 | 0.3865 | 4 | 0.1033 | 3 | 0.1577 | 5 | 0.1258 | 4 | |
2011 | 0.3936 | 4 | 0.1142 | 3 | 0.1563 | 5 | 0.1235 | 4 | |
2012 | 0.4085 | 4 | 0.1210 | 3 | 0.1571 | 5 | 0.1302 | 4 | |
2013 | 0.4191 | 4 | 0.1227 | 3 | 0.1566 | 5 | 0.1397 | 4 | |
2014 | 0.3978 | 4 | 0.1121 | 3 | 0.1470 | 5 | 0.1404 | 4 | |
2015 | 0.3852 | 4 | 0.1012 | 3 | 0.1491 | 5 | 0.1352 | 4 | |
Hai River Basin | 2000 | 0.5773 | 5 | 0.1755 | 4 | 0.1744 | 5 | 0.2227 | 7 |
2001 | 0.5872 | 5 | 0.1883 | 4 | 0.1689 | 5 | 0.2219 | 7 | |
2002 | 0.5917 | 5 | 0.1914 | 4 | 0.1639 | 5 | 0.2221 | 7 | |
2003 | 0.5372 | 5 | 0.1722 | 4 | 0.1563 | 5 | 0.1989 | 6 | |
2004 | 0.4856 | 5 | 0.1509 | 4 | 0.1554 | 5 | 0.1832 | 6 | |
2005 | 0.5041 | 5 | 0.1680 | 4 | 0.1550 | 5 | 0.1849 | 6 | |
2006 | 0.5187 | 5 | 0.1803 | 4 | 0.1533 | 5 | 0.1916 | 6 | |
2007 | 0.5181 | 5 | 0.1712 | 4 | 0.1487 | 5 | 0.1965 | 6 | |
2008 | 0.5022 | 5 | 0.1578 | 4 | 0.1439 | 5 | 0.1861 | 6 | |
2009 | 0.5093 | 5 | 0.1621 | 4 | 0.1405 | 4 | 0.1977 | 6 | |
2010 | 0.4589 | 4 | 0.1483 | 3 | 0.1381 | 4 | 0.1678 | 5 | |
2011 | 0.4639 | 4 | 0.1532 | 4 | 0.1390 | 4 | 0.1646 | 5 | |
2012 | 0.4476 | 4 | 0.1496 | 3 | 0.1380 | 4 | 0.1582 | 5 | |
2013 | 0.4360 | 4 | 0.1499 | 3 | 0.1361 | 4 | 0.1469 | 5 | |
2014 | 0.4531 | 4 | 0.1608 | 4 | 0.1394 | 4 | 0.1528 | 5 | |
2015 | 0.4393 | 4 | 0.1603 | 4 | 0.1257 | 4 | 0.1685 | 5 |
River Basin | Scene | Year | WVI | WVI (Level) | WSVI | WSVI (Level) | WPVI | WPVI (Level) | WDVI | WDVI (Level) |
---|---|---|---|---|---|---|---|---|---|---|
Huang River Basin | Scene1 | 2020 | 0.2731 | 3 | 0.1301 | 3 | 0.0781 | 3 | 0.0933 | 3 |
2030 | 0.2312 | 2 | 0.1307 | 3 | 0.0507 | 2 | 0.0721 | 2 | ||
Scene2 | 2020 | 0.3348 | 3 | 0.1362 | 3 | 0.1085 | 3 | 0.1062 | 3 | |
2030 | 0.2986 | 3 | 0.1399 | 3 | 0.0896 | 3 | 0.0979 | 3 | ||
Scene3 | 2020 | 0.3572 | 3 | 0.1620 | 4 | 0.1124 | 4 | 0.1180 | 4 | |
2030 | 0.3594 | 3 | 0.1640 | 4 | 0.1087 | 3 | 0.1173 | 4 | ||
Huai River Basin | Scene1 | 2020 | 0.3463 | 3 | 0.1198 | 3 | 0.1078 | 3 | 0.1221 | 4 |
2030 | 0.3082 | 3 | 0.1201 | 3 | 0.0853 | 3 | 0.0828 | 3 | ||
Scene2 | 2020 | 0.3827 | 4 | 0.1113 | 3 | 0.1355 | 4 | 0.1368 | 4 | |
2030 | 0.3231 | 3 | 0.1036 | 3 | 0.0881 | 3 | 0.0866 | 3 | ||
Scene3 | 2020 | 0.4040 | 4 | 0.1260 | 3 | 0.1528 | 5 | 0.1402 | 4 | |
2030 | 0.3739 | 4 | 0.1264 | 3 | 0.1231 | 4 | 0.1330 | 4 | ||
Hai River Basin | Scene1 | 2020 | 0.4033 | 4 | 0.1587 | 4 | 0.1048 | 3 | 0.1508 | 5 |
2030 | 0.3386 | 3 | 0.1617 | 4 | 0.0900 | 3 | 0.0993 | 3 | ||
Scene2 | 2020 | 0.4402 | 4 | 0.1641 | 4 | 0.1253 | 4 | 0.1614 | 5 | |
2030 | 0.4064 | 4 | 0.1647 | 4 | 0.1206 | 4 | 0.1178 | 4 | ||
Scene3 | 2020 | 0.4766 | 4 | 0.1673 | 4 | 0.1400 | 4 | 0.1719 | 5 | |
2030 | 0.4251 | 4 | 0.1669 | 4 | 0.1286 | 4 | 0.1369 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Feng, Y.; Zhang, F.; Yang, F.; Wang, L. Assessing and Predicting the Water Resources Vulnerability under Various Climate-Change Scenarios: A Case Study of Huang-Huai-Hai River Basin, China. Entropy 2020, 22, 333. https://doi.org/10.3390/e22030333
Chen Y, Feng Y, Zhang F, Yang F, Wang L. Assessing and Predicting the Water Resources Vulnerability under Various Climate-Change Scenarios: A Case Study of Huang-Huai-Hai River Basin, China. Entropy. 2020; 22(3):333. https://doi.org/10.3390/e22030333
Chicago/Turabian StyleChen, Yan, Yazhong Feng, Fan Zhang, Fan Yang, and Lei Wang. 2020. "Assessing and Predicting the Water Resources Vulnerability under Various Climate-Change Scenarios: A Case Study of Huang-Huai-Hai River Basin, China" Entropy 22, no. 3: 333. https://doi.org/10.3390/e22030333
APA StyleChen, Y., Feng, Y., Zhang, F., Yang, F., & Wang, L. (2020). Assessing and Predicting the Water Resources Vulnerability under Various Climate-Change Scenarios: A Case Study of Huang-Huai-Hai River Basin, China. Entropy, 22(3), 333. https://doi.org/10.3390/e22030333