The Fisher–Rao Distance between Multivariate Normal Distributions: Special Cases, Bounds and Applications
Abstract
:1. Introduction
2. The Fisher–Rao Distance in the Multivariate Normal Distribution Space: Special Submanifolds and Bounds
2.1. Closed Forms for the Fisher–Rao Distance in Submanifolds of
2.1.1. The Submanifold Where Is Constant
2.1.2. The Submanifold Where Is Constant
2.1.3. The Submanifold Where Is Diagonal
2.1.4. The Submanifold Where Is Diagonal and Is an Eigenvector of
2.2. Bounds for the Fisher–Rao in
2.2.1. A Lower Bound
2.2.2. The Upper Bound
2.2.3. The Upper Bounds and
2.2.4. Comparisons of the Bounds
3. Fisher–Rao Distance Between Special Distributions
3.1. The Fisher–Rao Distance Between Distributions with Common Covariance Matrices
3.2. The Fisher–Rao Distance Between Mirrored Distributions
- (i)
- (ii)
- The plane curve given by the coordinates of the mean vector in the geodesic connecting two of these distributions is a hyperbola.
4. Hierarchical Clustering for Diagonal Gaussian Mixture Simplification
4.1. Centroids in the Submanifold
4.2. Hierarchical Clustering Algorithm
- Single linkage:
- Complete linkage:
- Group average linkage:
Algorithm 1: Hierarchical Clustering Algorithm |
|
4.3. Experiments in Image Segmentation
5. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Calin, O.; Udriste, C. Geometric Modeling in Probability and Statistics. In Mathematics and Statistics; Springer International: Cham, Switzerland, 2014. [Google Scholar]
- Nielsen, F. An elementary introduction to information geometry. arXiv 2018, arXiv:1808.08271. [Google Scholar]
- Amari, S.; Nagaoka, H. Methods of Information Geometry. In Translations of Mathematical Monographs; Oxford University Press: Oxford, UK, 2000; Volume 191. [Google Scholar]
- Amari, S. Information Geometry and Its Applications; Springer: Tokyo, Japan, 2016. [Google Scholar]
- Ay, N.; Jost, J.; Vân Lê, H.; Schwachhöfer, L. Information geometry and sufficient statistics. Probab. Theory Relat. Fields 2015, 162, 327–364. [Google Scholar] [CrossRef] [Green Version]
- Vân Lê, H. The uniqueness of the Fisher metric as information metric. Ann. Inst. Stat. Math. 2017, 69, 879–896. [Google Scholar]
- Gibilisco, P.; Riccomagno, E.; Rogantin, M.P.; Wynn, H.P. Algebraic and Geometric Methods in Statistics; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Chentsov, N.N. Statistical Decision Rules and Optimal Inference; AMS Bookstore: Providence, RI, USA, 1982; Volume 53. [Google Scholar]
- Campbell, L.L. An extended Cencov characterization of the information metric. Proc. Am. Math. Soc. 1986, 98, 135–141. [Google Scholar]
- Vân Lê, H. Statistical manifolds are statistical models. J. Geom. 2006, 84, 83–93. [Google Scholar]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. 1936, 2, 49–55. [Google Scholar]
- Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 1943, 35, 99–110. [Google Scholar]
- Hotelling, H. Spaces of statistical parameters. Bull. Am. Math. Soc. (AMS) 1930, 36, 191. [Google Scholar]
- Rao, C.R. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Fisher, R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. 1921, 222, 309–368. [Google Scholar]
- Burbea, J. Informative geometry of probability spaces. Expo. Math. 1986, 4, 347–378. [Google Scholar]
- Skovgaard, L.T. A Riemannian geometry of the multivariate normal model. Scand. J. Stat. 1984, 11, 211–223. [Google Scholar]
- Atkinson, C.; Mitchell, A.F.S. Rao’s Distance Measure. Sankhyã Indian J. Stat. 1981, 43, 345–365. [Google Scholar]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Villani, C. Optimal Transport, Old and New. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Amari, S. Differential Geometrical Methods in Statistics; Springer: Berlin, Germany, 1985. [Google Scholar]
- Costa, S.I.R.; Santos, S.A.; Strapasson, J.E. Fisher information distance: A geometrical reading. Discret. Appl. Math. 2015, 197, 59–69. [Google Scholar] [CrossRef]
- Angulo, J.; Velasco-Forero, S. Morphological processing of univariate Gaussian distribution-valued images based on Poincaré upper-half plane representation. In Geometric Theory of Information; Springer International Publishing: Cham, Switzerland, 2014; pp. 331–366. [Google Scholar]
- Maybank, S.J.; Ieng, S.; Benosman, R. A Fisher–Rao metric for paracatadioptric images of lines. Int. J. Comput. Vis. 2012, 99, 147–165. [Google Scholar] [CrossRef] [Green Version]
- Schwander, O.; Nielsen, F. Model centroids for the simplification of kernel density estimators. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012. [Google Scholar]
- Taylor, S. Clustering Financial Return Distributions Using the Fisher Information Metric. Entropy 2019, 21, 110. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, P.S. Geodesics Connected with the Fischer Metric on the Multivariate Normal Manifold; Institute of Electronic Systems, Aalborg University Centre: Aalborg, Denmark, 1986. [Google Scholar]
- Calvo, M.; Oller, J.M. An explicit solution of information geodesic equations for the multivariate normal model. Stat. Decis. 1991, 9, 119–138. [Google Scholar] [CrossRef]
- Lenglet, C.; Rousson, M.; Deriche, R.; Faugeras, O. Statistics on the manifold of multivariate normal distributions. Theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 2006, 25, 423–444. [Google Scholar] [CrossRef]
- Moakher, M.; Mourad, Z. The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. J. Math. Imaging Vis. 2011, 40, 171–187. [Google Scholar] [CrossRef]
- Han, M.; Park, F.C. DTI Segmentation and Fiber Tracking Using Metrics on Multivariate Normal Distributions. J. Math. Imaging Vis. 2014, 49, 317–334. [Google Scholar] [CrossRef]
- Verdoolaege, G.; Scheunders, P. Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination. Int. J. Comput. Vis. 2011, 95, 265. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Rong, Y.; Zhou, J.; Li, X.R. Information geometric approach to multisensor estimation fusion. IEEE Trans. Signal Process. 2018, 67, 279–292. [Google Scholar] [CrossRef]
- Poon, C.; Keriven, N.; Peyré, G. Support Localization and the Fisher Metric for off-the-grid Sparse Regularization. arXiv 2018, arXiv:1810.03340. [Google Scholar]
- Gattone, S.A.; De Sanctis, A.; Puechmorel, S.; Nicol, F. On the geodesic distance in shapes K-means clustering. Entropy 2018, 20, 647. [Google Scholar] [CrossRef] [Green Version]
- Gattone, S.A.; De Sanctis, A.; Russo, T.; Pulcini, D. A shape distance based on the Fisher–Rao metric and its application for shapes clustering. Phys. A Stat. Mech. Appl. 2017, 487, 93–102. [Google Scholar] [CrossRef]
- Pilté, M.; Barbaresco, F. Tracking quality monitoring based on information geometry and geodesic shooting. In Proceedings of the 2016 17th International Radar Symposium (IRS), Krakow, Poland, 10–12 May 2016. [Google Scholar]
- Pinele, J.; Costa, S.I.; Strapasson, J.E. On the Fisher–Rao Information Metric in the Space of Normal Distributions. In International Conference on Geometric Science of Information; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; pp. 676–684. [Google Scholar]
- Burbea, J.; Rao, C.R. Entropy differential metric, distance and divergence measures in probability spaces: A unified approach. J. Multivar. Anal. 1982, 12, 575–596. [Google Scholar] [CrossRef] [Green Version]
- Porat, B.; Benjamin, F. Computation of the exact information matrix of Gaussian time series with stationary random components. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 118–130. [Google Scholar] [CrossRef]
- Siegel, C.L. Symplectic geometry. Am. J. Math. 1943, 65, 1–86. [Google Scholar] [CrossRef]
- Strapasson, J.E.; Pinele, J.; Costa, S.I.R. A totally geodesic submanifold of the multivariate normal distributions and bounds for the Fisher–Rao distance. In Proceedings of the IEEE Information Theory Workshop (ITW), Cambridge, UK, 11–14 September 2016; pp. 61–65. [Google Scholar]
- Calvo, M.; Oller, J.M. A distance between multivariate normal distributions based in an embedding into the Siegel group. J. Multivar. Anal. 1990, 35, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Calvo, M.; Oller, J.M. A distance between elliptical distributions based in an embedding into the Siegel group. J. Comput. Appl. Math. 2002, 145, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Strapasson, J.E.; Porto, J.; Costa, S.I.R. On bounds for the Fisher–Rao distance between multivariate normal distributions. Aip Conf. Proc. 2015, 1641, 313–320. [Google Scholar]
- Zhang, K.; Kwok, J.T. Simplifying mixture models through function approximation. IEEE Trans. Neural Netw. 2010, 21, 644–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.V.; Dhillon, I.S. Differential entropic clustering of multivariate gaussians. In Proceedings of the 2006 Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006. [Google Scholar]
- Goldberger, J.; Greenspan, H.K.; Dreyfuss, J. Simplifying mixture models using the unscented transform. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1496–1502. [Google Scholar] [CrossRef]
- Garcia, V.; Nielsen, F. Simplification and hierarchical representations of mixtures of exponential families. Signal Process. 2010, 90, 3197–3212. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X. Estimation and Tracking: Principles, Techniques and Software; Artech House: Norwood, MA, USA, 1993. [Google Scholar]
- Kurkoski, B.; Dauwels, J. Message-passing decoding of lattices using Gaussian mixtures. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008. [Google Scholar]
- Strapasson, J.E.; Pinele, J.; Costa, S.I.R. Clustering using the Fisher–Rao distance. In Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, Rio de Janerio, Brazil, 10–13 July 2016. [Google Scholar]
- Galperin, G.A. A concept of the mass center of a system of material points in the constant curvature spaces. Commun. Math. Phys. 1993, 154.1, 63–84. [Google Scholar] [CrossRef]
- Nielsen, F. Introduction to HPC with MPI for Data Science. In Undergraduate Topics in Computer Science; Springer: Cham, Switzerland, 2016. [Google Scholar]
Time Systems (s) | Time G.Shooting (s) | ||
---|---|---|---|
1 | 2.77395 | 0.046875 | 4.70313 |
2 | 3.67027 | 0.046875 | 5.60938 |
3 | 4.52933 | 0.0625 | 7.10938 |
4 | 5.26093 | 0.078125 | 9.17188 |
5 | 5.87480 | 0.046875 | 12.5313 |
6 | 6.39439 | 0.0625 | 18.4219 |
7 | 6.84043 | 0.078125 | 492.563 |
8 | 7.22903 | 0.0625 | 574.422 |
9 | 7.57221 | 0.046875 | 917.859 |
10 | 7.87896 | 0.046875 | 1007.13 |
Distance in Non-totally Geodesic Submanifolds | |
---|---|
Submanifold | Distance |
Distance in Totally Geodesic Submanifolds | |
, where are the eigenvalues of | |
Distance Between Special Distributions in | |
Distributions with Common Covariance Matrices, | , where P is an orthogonal matrix such that and |
Mirrored Distributions, and , with | , where x and are obtained by the solution of Equation (63) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinele, J.; Strapasson, J.E.; Costa, S.I.R. The Fisher–Rao Distance between Multivariate Normal Distributions: Special Cases, Bounds and Applications. Entropy 2020, 22, 404. https://doi.org/10.3390/e22040404
Pinele J, Strapasson JE, Costa SIR. The Fisher–Rao Distance between Multivariate Normal Distributions: Special Cases, Bounds and Applications. Entropy. 2020; 22(4):404. https://doi.org/10.3390/e22040404
Chicago/Turabian StylePinele, Julianna, João E. Strapasson, and Sueli I. R. Costa. 2020. "The Fisher–Rao Distance between Multivariate Normal Distributions: Special Cases, Bounds and Applications" Entropy 22, no. 4: 404. https://doi.org/10.3390/e22040404
APA StylePinele, J., Strapasson, J. E., & Costa, S. I. R. (2020). The Fisher–Rao Distance between Multivariate Normal Distributions: Special Cases, Bounds and Applications. Entropy, 22(4), 404. https://doi.org/10.3390/e22040404