Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics
Abstract
:1. Introduction
2. A General Framework for Lie Group Statistical Mechanics and Symmetries
2.1. A Class of Generalized Gibbs Probability Densities, Its Associated Entropy and Fisher Metric
2.2. Equivariance with Respect to Lie Group Actions
2.3. Souriau Symplectic Model of Statistical Mechanics
2.3.1. Souriau Symplectic Model of Satistical Mechanics
2.3.2. Lie-Poisson Equations with Cocycle and Property of the Entropy in Souriau’s Model
2.3.3. Dynamics with Casimir Dissipation/Production
- (i)
- (ii)
2.3.4. Stochastic Hamiltonian Dynamics
2.4. Polysymplectic Model of Statistical Mechanics
2.5. The Fisher Metric on Orbits and Equivariance
3. Applications
3.1. Multivariate Gaussian Probability Densities
3.2. Unitary Representations and Quantum Fisher Metric
3.3. Souriau Symplectic Model for , Lie-Poisson Equations with Cocycle, and Casimir Dissipation
4. Variational Principles and (Multi)Symplectic Integrators
4.1. Preliminaries on Variational Lie Group Integrators
4.2. Central Extensions and Variational Principle for the Lie-Poisson Equations with Cocycle
4.3. Variational Symplectic Integrators for the Lie-Poisson Equations with Cocycle
- (a)
- (b)
- (c)
- (d)
- ,
- (a)
- Using the definition of , we compute
- (b)
- Taking the dual map and using (a), we get
- (c)
- It follows by (a) and by inverting the relation
- (d)
- This follows by taking the dual map and using (c) as earlier.
- (a)
- The discrete curveis critical for the discrete Euler-Poincaré variational principle
- (b)
- The discrete curveis a solution of the discrete Euler-Poincaré equations
4.4. Multisymplectic Lie Group Variational Integrators
- (a)
- The discrete curveis critical for the discrete Euler-Poincaré field variational principle
- (b)
- The discrete curveis a solution of the discrete Euler-Poincaré field equations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Souriau, J.-M. Structure des Systèmes Dynamiques; Dunod: Paris, France, 1969. [Google Scholar]
- Marle, C.-M. From tools in symplectic and Poisson geometry to J.-M. Souriau’s theories of statistical mechanics and thermodynamics. Entropy 2016, 18, 370. [Google Scholar] [CrossRef] [Green Version]
- Barbaresco, F. Koszul information geometry and Souriau geometric temperature/capacity of Lie Group Thermodynamics. Entropy 2014, 16, 4521–4565. [Google Scholar] [CrossRef] [Green Version]
- Barbaresco, F. Geometric theory of heat from Souriau Lie groups thermodynamics and Koszul Hessian geometry: Applications in information geometry for exponential families. Entropy 2016, 18, 386. [Google Scholar] [CrossRef] [Green Version]
- Barbaresco, F. Higher order geometric theory of information and heat based on polysymplectic geometry of Souriau Lie groups thermodynamics and their contextures: The bedrock for Lie Group machine learning. Entropy 2018, 20, 840. [Google Scholar] [CrossRef] [Green Version]
- Barbaresco, F. Jean-Louis Koszul and the Elementary Structures of Information Geometry. In Geometric Structures of Information; Springer: Berlin, Germany, 2018; pp. 333–392. [Google Scholar]
- Barbaresco, F. Souriau exponential map algorithm for machine learning on matrix Lie groups. In GSI 2019. LNCS; Nielsen, F., Barbaresco, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11712. [Google Scholar]
- Barbaresco, F. Lie group machine learning and Gibbs density on Poincaré unit disk from Souriau Lie groups thermodynamics and SU(1,1) coadjoint orbits. In GSI 2019. LNCS; Nielsen, F., Barbaresco, F., Eds.; Springer: Cham, Switzerland, 2019; Volume 11712. [Google Scholar]
- Barbaresco, F. Application Exponentielle de Matrice par l’extension de l’algorithme de Jean-Marie Souriau, Utilisable pour le tir Géodésique et l’apprentissage Machine pour les Groupes de Lie. Colloque GRETSI 2019. 2019. Available online: http://gretsi.fr/colloque2019/ (accessed on 20 April 2020).
- Barbaresco, F. Les Structures Géométriques de l’information de Jean-Louis Koszul. Colloque GRETSI. 2019. Available online: http://gretsi.fr/colloque2019/ (accessed on 20 April 2020).
- Miolane, N.; Le Brigant, A.; Cabanes, Y. Geomstats: A Python Package for Riemannian Geometry in Machine Learning. 2020. Available online: https://hal.inria.fr/hal-02536154/file/main.pdf (accessed on 20 April 2020).
- Berthet, Q.; Blondel, M.; Teboul, O.; Cuturi, M.; Vert, J.-P.; Bach, F. Learning with Differentiable Perturbed Optimizers. arXiv 2020, arXiv:2002.08676. [Google Scholar]
- Blondel, M.; Martins, A.F.T.; Niculae, V. Learning with Fenchel-Young Losses. J. Mach. Learn. Res. 2020, 21, 1–69. [Google Scholar]
- Wainwright, M.J.; Jordan, M.I. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 2008, 1, 1–305. [Google Scholar] [CrossRef] [Green Version]
- Fréchet, M.R. Sur l’extension de certaines évaluations statistiques au cas de petits échantillons. Rev. Inst. Int. Stat. 1943, 11, 182–205. (In French) [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics I, II. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Koszul, J.L. Variétés localement plates et convexité. Osaka J. Math. 1965, 2, 285–290. (In French) [Google Scholar]
- Koszul, J.L. Exposés sur les Espaces Homogènes Symétriques; Publicação da Sociedade de Matematica de São Paulo: São Paulo, Brazil, 1959. (In French) [Google Scholar]
- Koszul, J.L. Déformations des variétés localement plates. Ann. Inst. Fourier 1968, 18, 103–114. (In French) [Google Scholar] [CrossRef]
- Vinberg, E.B. Homogeneous convex cones. Trans. Mosc. Math. Soc. 1963, 12, 340–363. [Google Scholar]
- Vinberg, E.B. The Theory of Homogeneous Convex Cones. Tr. Mosk. Mat. Obs. 1963, 12, 303–358. [Google Scholar]
- Koszul, J.L. Introduction to Symplectic Geometry; Science Press: Beijing, China, 1986. (In Chinese) [Google Scholar]
- Koszul, J.L. Selected Papers. In Series in Pure Mathematics; World Scientific Publishing: Singapore, 1994; Volume 17. [Google Scholar]
- Souriau, J.-M. Mécanique Statistique, Groupes de Lie et Cosmologie. 2020. Available online: https://www.academia.edu/42630654/Statistical_Mechanics_Lie_Group_and_Cosmology_1_st_part_Symplectic_Model_of_Statistical_Mechanics (accessed on 20 April 2020).
- Nencka, H.; Streater, R.F. Information geometry for some Lie algebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1999, 2, 441–460. [Google Scholar] [CrossRef]
- Gay-Balmaz, F.; Holm, D.D. Selective decay by Casimir dissipation in inviscid fluids. Nonlinearity 2013, 26, 495–524. [Google Scholar] [CrossRef] [Green Version]
- Gay-Balmaz, F.; Holm, D.D. A geometric theory of selective decay with applications in MHD. Nonlinearity 2014, 27, 1747–1777. [Google Scholar] [CrossRef] [Green Version]
- Balian, R.; Alhassid, Y.; Reinhardt, H. Dissipation in many-body systems: A geometric approach based on information theory. Phys. Rep. 1986, 131, 1–146. [Google Scholar] [CrossRef]
- Libermann, P.; Marle, C.-M. Symplectic Geometry and Analytical Mechanics; Reidel: Kufstein, Austria, 1987. [Google Scholar]
- Abraham, R.; Marsden, J.E. Foundations of Mechanics; Benjamin-Cummings Publ. Co.: San Francisco, CA, USA, 1978. [Google Scholar]
- Marsden, J.E.; Ratiu, T.S. Introduction to Mechanics and Symmetry; Springer: Berlin, Germany, 2003. [Google Scholar]
- Chirco, G.; Laudato, M.; Mele, F.M. Covariant momentum map thermodynamics for parametrized field theories. arXiv 2019, arXiv:abs/1911.06224. [Google Scholar]
- Gay-Balmaz, F.; Ratiu, T.S. Affine Lie-Poisson reduction, Yang-Mills magnetohydrodynamics, and superfluids. J. Phys. A Math. Theor. 2008, 41, 344007. [Google Scholar] [CrossRef] [Green Version]
- Gay-Balmaz, F.; Ratiu, T.S. The geometric structure of complex fluids. Adv. Appl. Math. 2009, 42, 176–275. [Google Scholar] [CrossRef] [Green Version]
- Gay-Balmaz, F.; Ratiu, T.S.; Tronci, C. Equivalent theories of liquid crystal dynamics. Arch. Ration. Mech. Anal. 2013, 210, 773–811. [Google Scholar] [CrossRef] [Green Version]
- Ellis, D.C.P.; Gay-Balmaz, F.; Holm, D.D.; Putkaradze, V.; Ratiu, T.S. Symmetry reduced dynamics of charged molecular strands. Arch. Ration. Mech. Anal. 2009, 197, 811–902. [Google Scholar] [CrossRef] [Green Version]
- Gay-Balmaz, F.; Holm, D.D.; Ratiu, T.S. Variational principles for spin systems and the Kirchhoff rod. J. Geom. Mech. 2009, 1, 417–444. [Google Scholar] [CrossRef]
- de Saxcé, G. Euler-Poincaré equation for Lie groups with non null symplectic cohomology. Application to the mechanics. In GSI 2019. LNCS; Nielsen, F., Barbaresco, F., Eds.; Springer: Berlin, Germany, 2019; Volume 11712. [Google Scholar]
- Marle, C.-M. Projection Stéréographique et Moments. 2019. Available online: https://hal.archives-ouvertes.fr/hal-02157930/ (accessed on 20 April 2020).
- Bismut, J.-M. Mécanique Aléatoire; Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981; Volume 866. [Google Scholar]
- Lazaro-Cami, J.A.; Ortega, J.-P. Stochastic Hamiltonian dynamical systems. Rep. Math. Phys. 2008, 61, 65–122. [Google Scholar] [CrossRef] [Green Version]
- Bou-Rabee, N.; Owhadi, H. Stochastic variational integrators. IMA J. Numer. Anal. 2009, 29, 421–443. [Google Scholar] [CrossRef]
- Holm, D.D. Variational principles for stochastic fluid dynamics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2015, 471, 2176. [Google Scholar] [CrossRef]
- Gay-Balmaz, F.; Holm, D.D. Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows. J. Nonlin. Sci. 2018, 28, 873–904. [Google Scholar] [CrossRef] [Green Version]
- Gay-Balmaz, F.; Holm, D.D. Predicting uncertainty in geometric fluid mechanics. Disc. Cont. Dyn. Syst. Ser. S 2020, 13, 1229–1242. [Google Scholar] [CrossRef] [Green Version]
- Arnaudon, A.; De Castro, A.L.; Holm, D.D. Noise and Dissipation on Coadjoint Orbits. J. Nonlinear Sci. 2018, 28, 91–145. [Google Scholar] [CrossRef] [Green Version]
- Günther, C. The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case. J. Diff. Geom. 1987, 25, 23–53. [Google Scholar] [CrossRef]
- Gotay, M.J.; Isenberg, J.; Marsden, J.E.; Montgomery, R.; Sniatycki, J.; Yasskin, P.B. Momentum maps and classical fields. Part I: Covariant field theory. arXiv 1997, arXiv:physics/9801019v2. [Google Scholar]
- Ingarden, R.S.; Nakagomi, T. The second order extension of the Gibbs state. Open Syst. Inf. Dyn. 1992, 1, 259–268. [Google Scholar] [CrossRef]
- Ingarden, R.S.; Kossakowski, A.; Ohya, M. Information Dynamics and Open Systems; Classical and Quantum Approach, Fundamental Theories of Physics; Springer: Berlin, Germany, 1997; Volume 86. [Google Scholar]
- Ingarden, R.S.; Meller, J. Temperatures in linguistics as a model of thermodynamics. Open Syst. Inf. Dyn. 1994, 2, 211–230. [Google Scholar] [CrossRef]
- Jaworski, W.; Lngarden, R.S. On the partition function in information thermodynamics with higher order temperatures. Bull. Acad. Pol. Sci. Sér. Phys. Astron. 1980, 1, 28–119. [Google Scholar]
- Jaworski, W. Investigation of the Thermodynamic Limit for the States Maximizing Entropy under Auxiliary Conditions for Higher-Order Statistical Moments. Ph.D. Thesis, Institute of Physics, Nicolaus Copernicus University, Torun, Poland, 1983. (In Polish). [Google Scholar]
- Jaworski, W. On the thermodynamic limit in information thermodynamics with higher-order temperatures. Acta Phys. Pol. 1983, A63, 3–19. [Google Scholar]
- Eriksen, P.S. Geodesics Connected with the Fisher Metric on the Multivariate Normal Manifold; Technical Report 86-13; Institute of Electronic Systems, Aalborg University: Aalborg, Denmark, 1986. [Google Scholar]
- Eriksen, P.S. Geodesics connected with the Fisher metric on the multivariate normal manifold. In Proceedings of the GST Workshop; University of Lancaster: Lancaster, UK, 1987. [Google Scholar]
- Balian, R. The entropy-based quantum metric. Entropy 2014, 16, 3878–3888. [Google Scholar] [CrossRef]
- Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations; Springer Series in Computational Mathematics; Springer: Berlin, Germany, 2010; Volume 31. [Google Scholar]
- Marsden, J.E.; West, M. Discrete mechanics and variational integrators. Acta Numer. 2001, 10, 357–514. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.E.; Pekarsky, S.; Shkoller, S. Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity 1998, 12, 1647–1662. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.E.; Patrick, G.W.; Shkoller, S. Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 1998, 199, 351–395. [Google Scholar] [CrossRef] [Green Version]
- Lew, A.; Marsden, J.E.; Ortiz, M.; West, M. Asynchronous variational integrators. Arch. Ration. Mech. Anal. 2003, 167, 85–146. [Google Scholar] [CrossRef] [Green Version]
- Demoures, F.; Gay-Balmaz, F.; Kobilarov, M.; Ratiu, T.S. Multisymplectic Lie group variational integrators for a geometrically exact beam in . Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3492–3512. [Google Scholar] [CrossRef] [Green Version]
- Demoures, F.; Gay-Balmaz, F.; Ratiu, T.S. Multisymplectic variational integrators for nonsmooth Lagrangian continuum mechanics. In Forum of Mathematics, Sigma; Cambridge University Press: Cambridge, UK, 2016; Volume 4, 54p. [Google Scholar]
- Demoures, F.; Gay-Balmaz, F.; Desbrun, M.; Ratiu, T.S.; Aragón, A. A multisymplectic integrator for elastodynamic frictionless impact problems. Comput. Methods Appl. Mech. Eng. 2017, 315, 1025–1052. [Google Scholar] [CrossRef] [Green Version]
- Gay-Bamaz, F.; Putkaradze, V. Variational discretizations for the dynamics of fluid-conveying flexible tubes. Comptes Rendus Mécanique 2016, 344, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Bobenko, A.I.; Suris, Y.B. Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semi-direct products. Lett. Math. Phys. 1999, 49, 79–93. [Google Scholar] [CrossRef]
- Iserles, A.; Munthe-Kaas, H.Z.; Nørsett, S.P.; Zanna, A. Lie-group methods. Acta Numer. 2000, 9, 215–365. [Google Scholar] [CrossRef] [Green Version]
- Bou-Rabee, N.; Marsden, J.E. Hamilton-Pontryagin integrators on Lie groups. Found. Comput. Math. 2009, 9, 197–219. [Google Scholar] [CrossRef]
- Kobilarov, M.B.; Marsden, J.E. Discrete geometric optimal control on Lie groups. IEEE Trans. Robot. 2011, 27, 641–655. [Google Scholar] [CrossRef]
- Demoures, F.; Gay-Balmaz, F.; Ratiu, T.S. Multisymplectic variational integrators and space/time symplecticity. Anal. Appl. 2016, 14, 341–391. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbaresco, F.; Gay-Balmaz, F. Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics. Entropy 2020, 22, 498. https://doi.org/10.3390/e22050498
Barbaresco F, Gay-Balmaz F. Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics. Entropy. 2020; 22(5):498. https://doi.org/10.3390/e22050498
Chicago/Turabian StyleBarbaresco, Frédéric, and François Gay-Balmaz. 2020. "Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics" Entropy 22, no. 5: 498. https://doi.org/10.3390/e22050498
APA StyleBarbaresco, F., & Gay-Balmaz, F. (2020). Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics. Entropy, 22(5), 498. https://doi.org/10.3390/e22050498