New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study
Abstract
1. Introduction
2. Theoretical Background
2.1. Thermoelectric Power Generation
2.2. Heating, Ventilating, and Air Conditioning
3. Parametric Analysis and Recommendations
4. Innovative Concept and Calculations
- : conditioned space cooling load.
- : Specific enthalpy of air inside the room.
- : Specific enthalpy of supplied air.
Flow Nature | Correlation |
---|---|
Laminar flow | |
Mixed flow |
- represents the rate of energy “in” to the oil
- The rate of energy out from oil
- is the rate of energy that could be generated from the oil
- is the rate of storage energy.
5. Economic and Environmental Concerns
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du, W.J.; Yin, Q.; Cheng, L. Experiments on novel heat recovery systems on rotary kilns. Appl. Ther. Eng. 2018, 139, 535–541. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, L.; Meng, F.; Sun, F. Influences of the Thomson Effect on the Performance of a Thermoelectric Generator-Driven Thermoelectric Heat Pump Combined Device. Entropy 2018, 20, 29. [Google Scholar] [CrossRef]
- Wang, R.; Kuang, G.; Zhu, L.; Wang, S.; Zhao, J. Experimental Investigation of a 300 kW Organic Rankine Cycle Unit with Radial Turbine for Low-Grade Waste Heat Recovery. Entropy 2019, 21, 619. [Google Scholar] [CrossRef]
- Wang, S.; Fu, Z. Thermodynamic Investigation of an Integrated Solar Combined Cycle with an ORC System. Entropy 2019, 21, 428. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Xue, X.; Wang, G.; Mei, S. Thermodynamic Analysis of a Hybrid Power System Combining Kalina Cycle with Liquid Air Energy Storage. Entropy 2019, 21, 220. [Google Scholar] [CrossRef]
- Almeida, A.V.; Robles, M.A.O.; Medina, P.C. Thermoelectric System in Different Thermal and Electrical Configurations: Its Impact in the Figure of Merit. Entropy 2013, 15, 2162–2180. [Google Scholar] [CrossRef]
- Medina, P.C.; Robles, M.A.O.; Almeida, A.V.; Ordaz, F.S. Maximum Power of Thermally and Electrically Coupled Thermoelectric Generators. Entropy 2014, 16, 2890–2903. [Google Scholar] [CrossRef]
- Ruiz, C.A.B.; Robles, M.A.O.; Perez, J.J.C. Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency. Entropy 2019, 21, 224. [Google Scholar] [CrossRef]
- Huang, S.; Li, C.; Tan, T.; Fu, P.; Wang, L.; Yang, Y. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Entropy 2018, 20, 89. [Google Scholar] [CrossRef]
- Liu, P.; Shu, G.; Tian, H.; Wang, X. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery. Entropy 2018, 20, 137. [Google Scholar]
- Ganjehkaviri, A.; Jaafar, M.N.M. Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery. Entropy 2014, 16, 5633–5653. [Google Scholar] [CrossRef]
- He, W.; Wang, S.; Zhang, X.; Li, Y.; Lu, C. Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat. Energy 2015, 91, 1–9. [Google Scholar] [CrossRef]
- Champier, D.; Bédécarrats, J.; Kousksou, T.; Rivaletto, M.; Strub, F.; Pignolet, P. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy 2011, 36, 1518–1526. [Google Scholar] [CrossRef]
- Montecucco, A.; Siviter, J.; Knox, A.R. Combined heat and power system for stoves with thermoelectric generators. Appl. Energy 2017, 185, 1336–1342. [Google Scholar] [CrossRef]
- Gao, H.B.; Huang, G.H.; Li, H.J.; Qu, Z.G.; Zhang, Y.J. Development of stove-powered thermoelectric generators: A review. Appl. Ther. Eng. 2016, 96, 297–310. [Google Scholar] [CrossRef]
- Durand, T.; Dimopoulos, P.; Tang, Y.; Liao, Y.; Landmann, D. Potential of energy recuperation in the exhaust gas of state of the art light duty vehicles with thermoelectric elements. Fuel 2018, 224, 271–279. [Google Scholar] [CrossRef]
- Chinguwa, S.; Musora, C.; Mushiri, T. The design of portable refrigerator powered by exhaust heat using thermoelectric. Procedia Manuf. 2018, 21, 741–748. [Google Scholar] [CrossRef]
- He, W.; Wang, S.; Yue, L. High net power output analysis with changes in exhaust temperature in a thermoelectric generator system. Appl. Energy 2017, 196, 259–267. [Google Scholar] [CrossRef]
- Li, B.; Huang, K.; Yan, Y.; Li, Y.; Twaha, S.; Zhu, J. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles. Appl. Energy 2017, 205, 868–879. [Google Scholar] [CrossRef]
- Valencia, G.; Núñez, J.; Duarte, J. Multiobjective Optimization of a Plate Heat Exchanger in a Waste Heat Recovery Organic Rankine Cycle System for Natural Gas Engines. Entropy 2019, 21, 655. [Google Scholar] [CrossRef]
- Jaber, H.; Ramadan, M.; Lemenand, T.; Khaled, M. Domestic thermoelectric cogeneration system optimization analysis, energy consumption and CO2 emissions reduction. Appl. Ther. Eng. 2018, 130, 279–295. [Google Scholar] [CrossRef]
- Jaber, H.; Khaled, M.; Lemenand, T.; Faraj, J.; Bazzi, H.; Ramadan, M. Effect of Exhaust Gases Temperature on the Performance of a Hybrid Heat Recovery System. Energy Procedia 2017, 119, 775–782. [Google Scholar] [CrossRef]
- Kul, B.S.; Kahraman, A. Energy and Exergy Analyses of a Diesel Engine Fuelled with Biodiesel-Diesel Blends Containing 5% Bioethanol. Entropy 2016, 18, 387. [Google Scholar]
- Kim, T.Y.; Negash, A.A.; Cho, G. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Convers. Manag. 2016, 124, 280–286. [Google Scholar] [CrossRef]
- In, B.; Kim, H.; Son, J.; Lee, K. The study of a thermoelectric generator with various thermal conditions of exhaust gas from a diesel engine. Int. J. Heat Mass Transf. 2015, 86, 667–680. [Google Scholar] [CrossRef]
- Shu, G.; Zhao, J.; Tian, H.; Liang, X.; Wei, H. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy 2012, 45, 806–816. [Google Scholar] [CrossRef]
- Gao, X.; Andreasen, S.; Chen, M.; Kaer, S. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery. Int. J. Hydrogen Energy 2012, 37, 8490–8498. [Google Scholar] [CrossRef]
- Orr, B.; Akbarzadeh, A.; Mochizuki, M.; Singh, R. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl. Therm. Eng. 2015, 101, 490–495. [Google Scholar] [CrossRef]
- Rahman, A.; Razzak, F.; Afroz, R.; Mohiuddin, A.; Hawlader, M. Power generation from waste of IC engines. Renew. Sustain. Energy Rev. 2015, 51, 382–395. [Google Scholar] [CrossRef]
- McQuiston, F.C.; Parker, J.D.; Spitler, J.D. Heating, Ventilating and Air Conditioning: Analysis and Design, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- LeBlanc, S. Thermoelectric generators: Linking material properties and system engineering for waste heat recovery applications. Sustain. Mater. Technol. 2014, 1, 26–35. [Google Scholar] [CrossRef]
- Kanno, T.; Takahashi, K.; Sakai, A.; Tamaki, H.; Kusada, H.; Yamada, Y. Detection of thermal radiation, sensing of heat flux, and recovery of waste heat by the transverse thermoelectric effect. J. Electron. Mater. 2014, 43, 2072–2080. [Google Scholar] [CrossRef]
- Incorpera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Jaber, H.; Khaled, M.; Lemenand, T.; Murr, R.; Faraj, J.; Ramadan, M. Domestic thermoelectric cogeneration drying system: Thermal modeling and case study. Energy 2019, 170, 1036–1050. [Google Scholar] [CrossRef]
- Spices, P.; Pollak, M.; Mateu, L. Handbook of Energy Harvesting Power Supplies and Applications; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Synder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
Configuration | Details | Recommendations | Parameters Range |
---|---|---|---|
1 | High convective heat transfer coefficient and high thickness “t” Low thermal conductivity and temperature at the cold side of the TEG module. | ||
2 | High thickness and heat flux at the hot surface of TEG. Low thermal conductivity of TEG. | ||
3 | High thickness and high heat flux at the hot surface of TEG Low thermal conductivity of TEG module | ||
4 | High thickness, high temperature of the hot fluid, high connective coefficient of the hot and cold side of TEG module Low thermal conductivity and low temperature of the cold fluid |
Variables | Value | Unit |
---|---|---|
Room temperature | 24 | °C |
Fraction of exhausted air “E” | 0.4 | - |
Height of the exhaust duct “H1” | 0.1 | m |
The height of oil tank | 0.1 | m |
The length of bottom plate composed of TEG | 0.4 | m |
The width of bottom plate composed of TEG | 0.4 | m |
Heat transfer coefficient , [33] | 200 | W/m2 K |
The overall heat transfer coefficient of insulation , [33] | 8.4 | W/m2 K |
Ambient temperature | 30 | °C |
Thickness of TEG, [35,36] | 0.12 | m |
Thermal conductivity of TEG, [35,36] | 0.3 | W/m·K |
Electric Rates in One Month | Cost ($/kWh) |
---|---|
0–99 kWh/month | 0.023 |
100–299 kWh/month | 0.037 |
300–399 kWh/month | 0.053 |
400–499 kWh/month | 0.08 |
>500 kWh/month | 0.133 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraj, A.; Jaber, H.; Chahine, K.; Faraj, J.; Ramadan, M.; El Hage, H.; Khaled, M. New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study. Entropy 2020, 22, 503. https://doi.org/10.3390/e22050503
Faraj A, Jaber H, Chahine K, Faraj J, Ramadan M, El Hage H, Khaled M. New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study. Entropy. 2020; 22(5):503. https://doi.org/10.3390/e22050503
Chicago/Turabian StyleFaraj, Ahmad, Hassan Jaber, Khaled Chahine, Jalal Faraj, Mohamad Ramadan, Hicham El Hage, and Mahmoud Khaled. 2020. "New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study" Entropy 22, no. 5: 503. https://doi.org/10.3390/e22050503
APA StyleFaraj, A., Jaber, H., Chahine, K., Faraj, J., Ramadan, M., El Hage, H., & Khaled, M. (2020). New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study. Entropy, 22(5), 503. https://doi.org/10.3390/e22050503