Towards the Development of Nonlinear Approaches to Discriminate AF from NSR Using a Single-Lead ECG
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description and Preprocessing
2.2. Phase Space Reconstruction Using Time-Delayed Embedding Method
2.2.1. Estimating : Autocorrelation and Mutual Information
2.2.2. Estimating : False Nearest Neighbor Algorithm
2.2.3. Phase Space Reconstruction
2.3. Multiscale Entropy (MSE)
2.4. Kurtosis
2.5. Data Analysis
3. Results
3.1. Optimized Time-Delayed Embedding Method to discriminate Pers. AF from NSR
3.1.1. : Pers. AF Discriminator
3.1.2. : Pers. AF Discriminator
3.1.3. Phase Space Reconstruction Plots
3.2. Information-Based Methods to Discriminate Pers. AF from NSR
3.2.1. MSE
3.2.2. Kt
3.3. Paro. AF discrimination
4. Discussion
4.1. Benefits of Time-Delayed Embedding Method
4.2. Benefits of Information-Based Methods
4.3. Validation of Three Nonlinear Methods with Short Length of ECG
4.4. Influence of Noise Removal
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Motivation to Select Multiple Embedding Time Delay τ
Appendix B. MSE
Appendix C. Validation of Three Nonlinear Methods with Short Length of ECG
References
- Atrial Fibrillation: Facts about AFib. Available online: https://www.cdc.gov/heartdisease/atrial_fibrillation.htm (accessed on 15 March 2020).
- Biosense Webster EMEA. The Burden of Atrial Fibrillation: Understanding the Impact of the New Millennium Epidemic across Europe; Johnson & Johnson Medical: New Brunswick, NJ, USA, 2018. [Google Scholar]
- Camm, A.J.; Kirchhof, P.; Lip, G.Y.; Schotten, U.; Savelieva, I.; Ernst, S.; Van Gelde, I.C.; Al-Attar, N. Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 2010, 31, 2369–2429. [Google Scholar] [PubMed]
- Park, J.; Lee, C.; Leshem, E.; Blau, I.; Kim, S.; Lee, J.M.; Hwang, J.-A.; Choi, B.; Lee, M.-H.; Hwang, H.J. Early differentiation of long-standing persistent atrial fibrillation using the characteristics of fibrillatory waves in surface ECG multi-leads. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tateno, K.; Glass, L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Med. Biol. Eng. Comput. 2001, 39, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, S.P.; Annoni, E.M.; Kapa, S.; Mulpuru, S.K.; Friedman, P.A.; Tolkacheva, E.G. Multiscale frequency technique robustly discriminates normal sinus rhythm and atrial fibrillation on a single lead electrocardiogram C3. In 54th Annual Rocky Mountain Bioengineering Symposium, RMBS 2017 and 54th International Biomedical Sciences Instrumentation; ISA: Aurora, CO, USA, 2017. [Google Scholar]
- Arunachalam, S.P.; Kapa, S.; Mulpuru, S.K.; Friedman, P.A.; Tolkacheva, E.G. Improved Multiscale Entropy Technique with Nearest-Neighbor Moving-Average Kernel for Nonlinear and Nonstationary Short-Time Biomedical Signal Analysis. J. Healthc. Eng. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Perc, M. Nonlinear time series analysis of the human electrocardiogram. Eur. J. Phys. 2005, 26, 757. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.K.; Bit, A.; Dey, A.; Mohapatra, B.; Pal, K. A review on the nonlinear dynamical system analysis of electrocardiogram signal. J. Healthc. Eng. 2018, 2018, 6920420. [Google Scholar] [CrossRef] [Green Version]
- Kiani, K.; Maghsoudi, F. Classification of 7 Arrhythmias from ECG Using Fractal Dimensions. J. Bioinforma. Syst. Biol. 2019, 2, 53–65. [Google Scholar]
- Mehta, C.; Miller, M. Chaos Analysis for EKG Time Series Data; Dartmouth College, Department of Mathematics: Hanover, NH, USA, 2007; pp. 1–9. [Google Scholar]
- San-Um, W.; Ketthong, P. The quantitative analysis of nonlinear behaviors of arrhythmia through Lyapunov Exponents. In Proceedings of the 7th 2014 Biomedical Engineering International Conference, Fukuoka, Japan, 26–28 November 2014; pp. 1–4. [Google Scholar]
- Al-Fahoum, A.S.; Qasaimeh, A.M. A practical reconstructed phase space approach for ECG arrhythmias classification. J. Med. Eng. Technol. 2013, 37, 401–408. [Google Scholar] [CrossRef]
- Wallot, S.; Mønster, D. Calculation of Average Mutual Information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab. Front. Psychol. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Whitney, H.; Eells, J.; Toledo, D. Collected Papers of Hassler Whitney; Nelson Thornes: Cheltenham, UK, 1992; ISBN 0817635602. [Google Scholar]
- Takens, F. Detecting strange attractors in turbulence BT—Dynamical Systems and Turbulence, Warwick 1980; Rand, D., Young, L.-S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Hundewale, N.; Arabia, S. The application of methods of nonlinear dynamics for ECG in Normal Sinus Rhythm. Int. J. Comput. Sci. Issues 2012, 9, 458–467. [Google Scholar]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 68102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.-D.; Wu, C.-W.; Lee, K.-Y.; Lin, S.-G. Modified multiscale entropy for short-term time series analysis. Phys. A Stat. Mech. Appl. 2013, 392, 5865–5873. [Google Scholar] [CrossRef]
- Arunachalam, S.P.; Annoni, E.M.; Mulpuru, S.K.; Paul, A.; Tolkacheva, E.G. Kurtosis as a Statistical Approach to Identify the Pivot Point of the Rotor Kurtosis as a Statistical Approach to Identify the Pivot Point of the Rotor. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Annoni, E.; Friedman, P.A.; Annoni, E.M.; Arunachalam, S.P.; Kapa, S.; Mulpuru, S.K.; Paul, A. Novel Quantitative Analytical Approaches for Rotor Identification and Associated Implications for Mapping Novel Quantitative Analytical Approaches for Rotor Identification and Associated Implications for Mapping. IEEE Trans. Biomed. Eng. 2017, 65, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, S.P.; Annoni, E.M.; Mulpuru, S.K.; Friedman, P.A.; Tolkacheva, E.G. Novel multiscale frequency approach to identify the pivot point of the rotor. J. Med. Device. 2016, 10, 20948. [Google Scholar] [CrossRef]
- Poigai Arunachalam, S.; Annoni, E.M.; Kapa, S.; Mulpuru, S.K.; Friedman, P.A.; Tolkacheva, E.G. Robust Discrimination of Normal Sinus Rhythm and Atrial Fibrillation on ECG Using a Multiscale Frequency Technique. In Proceedings of the 2017 Design of Medical Devices Conference DMD 2017, Minneapolis, MN, USA, 10–13 April 2017. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.H.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2003, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a time series. Phys. Rev. Lett. 1980, 45, 712. [Google Scholar] [CrossRef]
- Kantz, H.; Schrieber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef] [Green Version]
- Marwan, N.; Thiel, M.; Nowaczyk, N.R. Cross recurrence plot based synchronization of time series. arXiv 2002, arXiv:physics/0201062v1. [Google Scholar] [CrossRef]
- Chelidze, D. Delay Coordinate Embedding. Available online: https://personal.egr.uri.edu/chelidz/documents/mce567_Chapter_7.pdf (accessed on 15 March 2020).
- Casdagli, M.; Eubank, S.; Farmer, J.D.; Gibson, J. State space reconstruction in the presence of noise. Phys. D Nonlinear Phenom. 1991, 51, 52–98. [Google Scholar] [CrossRef]
- Shiroshita-Takeshita, A.; Brundel, B.J.J.M.; Nattel, S. Atrial fibrillation: Basic mechanisms, remodeling and triggers. J. Interv. Card. Electrophysiol. 2005, 13, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.; Koppikar, S.; Barake, W.; Redfearn, D.; Michael, K.; Simpson, C.; Hopman, W.; Baranchuk, A. Prolonged P-wave duration is associated with atrial fibrillation recurrence after successful pulmonary vein isolation for paroxysmal atrial fibrillation. J. Interv. Card. Electrophysiol. 2014, 39, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Liang, S.-Y.; Ho, Y.-L.; Lin, Y.-H.; Ma, H.-P. Discrete-wavelet-transform-based noise removal and feature extraction for ECG signals. Irbm 2014, 35, 351–361. [Google Scholar] [CrossRef]
- Haritha, C.; Ganesan, M.; Sumesh, E.P. A survey on modern trends in ECG noise removal techniques. In Proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 18–19 March 2016; pp. 1–7. [Google Scholar]
NSR | Paro. AF | Pers. AF | ||
---|---|---|---|---|
Database | MIT-BIH NSR | MIT-BIH AF | MIT-BIH AF | |
No. of Patients | 8 (100% of NSR) | 8 (~82% of NSR) | 8 (0% of NSR) | |
Sampling Rate, Hz | 128 | 250 → 128 | 250 → 128 | |
No. of 10-sec segments | total | 5760 | 5760 | 5537 |
per patient | 720 | 720 | 20, 33, 134, 1953, 304, 1733, 584, 776 | |
Filtering | Baseline wander removal by bandpass filter [0.5, 40] Hz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Guo, Y.; Ravikumar, V.; Tolkacheva, E.G. Towards the Development of Nonlinear Approaches to Discriminate AF from NSR Using a Single-Lead ECG. Entropy 2020, 22, 531. https://doi.org/10.3390/e22050531
Lee J, Guo Y, Ravikumar V, Tolkacheva EG. Towards the Development of Nonlinear Approaches to Discriminate AF from NSR Using a Single-Lead ECG. Entropy. 2020; 22(5):531. https://doi.org/10.3390/e22050531
Chicago/Turabian StyleLee, Jieun, Yugene Guo, Vasanth Ravikumar, and Elena G. Tolkacheva. 2020. "Towards the Development of Nonlinear Approaches to Discriminate AF from NSR Using a Single-Lead ECG" Entropy 22, no. 5: 531. https://doi.org/10.3390/e22050531
APA StyleLee, J., Guo, Y., Ravikumar, V., & Tolkacheva, E. G. (2020). Towards the Development of Nonlinear Approaches to Discriminate AF from NSR Using a Single-Lead ECG. Entropy, 22(5), 531. https://doi.org/10.3390/e22050531