Time, Irreversibility and Entropy Production in Nonequilibrium Systems
Abstract
:1. Introduction
- It should contain the realistic model, which properly describes the evolution of a system to the equilibrium state;
- It should provide a suitable method for the calculation of the currents and corresponding fluxes.
2. Entropy and Time
3. Thermophysics of Radiative Processes and Time
- Time may be considered as a discrete quantity, as pointed out also by Riek [69];
- Time is in a way the result of the irreversibility in the Universe; thus, reversible clocks cannot be realised;
- Locally, entropy can decrease, but entropy generation (due to irreversibility) must always increase, with the consequence that time can only increase, as suggested by the arrow of time;
- Our results are in complete accordance with the ones of Briggs; indeed, only macroscopic classic clocks can be obtained [70].
- Time may be thought of as a manifestation of cyclic processes with frequency of the electromagnetic radiation from a blackbody or, in an equivalent way, of the interaction of the electromagnetic wave and the matter;
- The Second Law of Thermodynamics cannot be fully considered only from a mechanical point of view, because there may exist some irreversible phenomena, which may influence or manifest in interaction processes.
4. Results and Conclusions
- The dimensional analysis, as also developed by Maupertuis in Analytical Mechanics [80,81,82], yields the relation:Now, we follow the approach developed by Landau on the theory of Maupertuis [82]. Therefore, we consider the variation of [82,84,85]:Considering the Hamilton–Jacobi equation in the approach of Maupertuis [82]:Landau proved [82]:
- Time in a way is a manifestation of a cyclic process [3]
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuzemsky, A.L. Statistical Mechanics and the Physics of Many-Particle Model Systems; World Scientific: Singapore, 2017. [Google Scholar]
- Kuzemsky, A.L. Temporal evolution, directionality of time and irreversibility. Riv. Del Nuovo Cimento 2018, 41, 513–574. [Google Scholar]
- Kuzemsky, A.L. In search of time lost: Asymmetry of time and irreversibility in natural processes. Found. Sci. 2020, 25. [Google Scholar] [CrossRef]
- Lin, S.K. Diversity and entropy. Entropy 1999, 1, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Beattie, J.A.; Oppenheim, I. Principles of Thermodynamics; Elsevier: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Guggenheim, E.A. Thermodynamics. An Advanced Treatment for Chemists and Physicists; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Landsberg, P.T. Thermodynamics and Statistical Mechanics; Dover Publications: New York, NY, USA, 1990. [Google Scholar]
- Pauli, W. Statistical Mechanics; MIT Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Pauli, W. Thermodynamics and Kinetic Theory of Gases; MIT Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Schrödinger, E. Statistical Thermodynamics; Cambridge University Press: Cambridge, MA, USA, 1952. [Google Scholar]
- Fermi, E. Thermodynamics; Dover Publications: Mineola, NY, USA, 2012. [Google Scholar]
- Muschik, W. Formulation of the second law—Recent developments. J. Phys. Chem. Solids 1988, 49, 709–720. [Google Scholar] [CrossRef]
- Velasco, R.M.; García-Colín, L.S.; Uribe, F.J. Entropy production: Its role in non-equilibrium thermodynamics. Entropy 2011, 13, 82–116. [Google Scholar] [CrossRef]
- Casas, G.A.; Nobre, F.D.; Curado, E.M.F. Generalized entropy production phenomena: A master-equation approach. Phys. Rev. E 2014, 89, 012114. [Google Scholar] [CrossRef] [PubMed]
- Zubarev, D.N. Nonequilibrium Statistical Thermodynamics; Consultant Bureau: New York, NY, USA, 1974. [Google Scholar]
- Kuzemsky, A.L. Theory of transport processes and the method of the nonequilibrium statistical operator. Int. J. Mod. Phys. 2007, 21, 2821–2949. [Google Scholar] [CrossRef]
- Mackey, M.C. The dynamic origin of increasing entropy. Rev. Mod. Phys. 1989, 61, 981–1015. [Google Scholar] [CrossRef]
- Mackey, M.C. Time’s Arrow: The Origin of Thermodynamic Behavior; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Hoover, W.G.; Hoover, C.G. Time-irreversibility is hidden within Newtonian mechanics. Mol. Phys. 2018, 116, 3085–3096. [Google Scholar] [CrossRef] [Green Version]
- Lighthill, J. The recently recognized failure of predictability in Newtonian dynamics. Proc. R. Soc. 1986, 407, 35–50. [Google Scholar]
- Lucia, U.; Açikkalp, E. Irreversible thermodynamic analysis and application for molecular heat engines. Chem. Phys. 2017, 494, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U.; Grisolia, G. Time & clocks: A thermodynamic approach. Results Phys. 2020, 16, 102977. [Google Scholar]
- Lucia, U.; Grisolia, G. Time: A footprint of irreversibility. Atti Dell’Accademia Peloritana Dei Pericolanti 2019, 97, SC1–SC4. [Google Scholar]
- Lucia, U. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems. Sci. Rep. 2016, 6, 35792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, U. Unreal perpetual motion machine, Rydberg constant and Carnot non-unitary efficiency as a consequence of the atomic irreversibility. Phys. Stat. Mech. Appl. 2018, 492, 962–968. [Google Scholar] [CrossRef]
- Lucia, U. Considerations on non equilibrium thermodynamics of interactions. Phys. Stat. Mech. Appl. 2016, 447, 314–319. [Google Scholar] [CrossRef]
- Franklin, W.S. On entropy. Phys. Rev. 1910, 30, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U. Stationary open systems: A brief review on contemporary theories on irreversibility. Phisica A 2013, 392, 1051–1062. [Google Scholar] [CrossRef]
- Lucia, U. Carnot efficiency: Why? Phisica A 2013, 392, 3513–3517. [Google Scholar] [CrossRef]
- Andresen, B.; Berry, R.S.; Ondrechen, M.J.; Salamon, P. Thermodynamics for processes in finite time. Acc. Chem. Res. 1984, 17, 266–271. [Google Scholar] [CrossRef]
- Kuzemsky, A.L. Time Evolution of Open Nonequilibrium Systems and Irreversibility. Phys. Part. Nucl. 2020, 51, 766–771. [Google Scholar]
- Honig, J. On the entropy of a class of irreversible processes. Entropy 2013, 15, 2975–2988. [Google Scholar] [CrossRef] [Green Version]
- Bejan, A.; Lorente, S. The constructal law and the evolution of design in nature. Phys. Life Rev. 2011, 8, 209–240. [Google Scholar] [CrossRef] [PubMed]
- Planck, M. The Theory of Heat Radiation; Dover Publications: New York, NY, USA, 1959. [Google Scholar]
- Heitler, W. The Quantum Theory of Radiation; Dover Publications: New York, NY, USA, 2010. [Google Scholar]
- Jammer, M. The Conceptual Development of Quantum Mechanics; McGraw Hill: New York, NY, USA, 1966. [Google Scholar]
- Surdin, M.; Braffort, P.; Taroni, F. Black-body Radiation Law deduced from Stochastic Electrodynamics. Nature 1966, 210, 405–406. [Google Scholar] [CrossRef]
- Rueda, A. On the irreversible thermophysics of radiative processes. Found. Phys. 1974, 4, 215–226. [Google Scholar] [CrossRef]
- Fonseca, J.M.; Gomes, A.H.; Moura-Melo, W.A. Emission and absorption of photons and the black-body spectrum in Lorentz-odd electrodynamics. Phys. Lett. 2009, 671, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.H. Blackbody radiation in classical physics: A historical perspective. Am. J. Phys. 2018, 86, 495–509. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.H. Use and validity of principles of extremum of entropy production in the study of complex systems. Ann. Phys. 2014, 346, 22–27. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Time: A Constructal viewpoint & its consequences. Sci. Rep. 2019, 9, 10454. [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Jaynes, E.T. The Minimum Entropy Production Principle. Ann. Rev. Phys. Chem. 1980, 31, 579. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U. Probability, ergodicity, irreversibility and dynamical systems. Proc. R. Soc. A 2008, 464, 1089–1104. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Relativistic Quantum Theory; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
- Feynman, R.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics. Vol. III; Addison Wesley: Boston, MA, USA, 1964. [Google Scholar]
- Alonso, M.; Finn, E.J. Fundamental University Physics. Vol. III. Quantum and Statistical Physics; Addison Wesley: Boston, MA, USA, 1968. [Google Scholar]
- Lucia, U. Thermodynamic paths and stochastic order in open systems. Phys. A 2013, 392, 3912–3919. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.; Crawford, P. Time, closed timelike curves and causality. NATO Sci. Ser. 2003, II 95, 289. [Google Scholar]
- Bejan, A. Shape and Structure, from Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bejan, A.; Lorente, S. Design with Constructal Theory; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Lucia, U. A link between nano- and classical thermodynamics: Dissipation analysis (The entropy generation approach in nano-thermodynamics). Entropy 2015, 17, 1309–1328. [Google Scholar] [CrossRef]
- Reis, A.H. Constructal theory: From engineering to physics, and how flow systems develop shape and structure. Appl. Mech. Rev. 2006, 59, 262–282. [Google Scholar] [CrossRef]
- Miguel, A.F. The physics principle of the generation of flow configuration. Phys. Life Rev. 2011, 8, 243–244. [Google Scholar] [CrossRef] [PubMed]
- Miguel, A.F.; Bejan, A. The principle that generates dissimilar patterns inside aggregates of organisms. Phys. Stat. Mech. Appl. 2009, 388, 727–731. [Google Scholar] [CrossRef]
- Bejan, A. Advanced Engineering Thermodynamics; John Wiley: New York, NY, USA, 2006. [Google Scholar]
- Badiali, J.P. The concept of entropy. Relation between action and entropy. Condens. Matter Phys. 2005, 8, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Autobiographical Notes; Schilpp, P.A., Ed.; Translator; Open Court Publishing Company: Chicago, IL, USA, 1982. [Google Scholar]
- Berry, R.S.; Smirnov, B.M. Clusters as tools to link macro and micro approaches. Comput. Theor. Chem. 2013, 1021, 2–6. [Google Scholar] [CrossRef]
- Beretta, G.P.; Gyftopoulos, E.P. Electromagnetic Radiation: A Carrier of Energy and Entropy. J. Energy Resour. Technol. 2015, 137, 021005. [Google Scholar] [CrossRef] [Green Version]
- Doyle, R.O. Great Problems in Philosophy & Physics—Solved? Information Philosopher: Cambridge, MA, USA, 2016. [Google Scholar]
- Doyle, R.O. The Origin of Irreversibility; Information Philosopher. (Last Access). Available online: https://www.informationphilosopher.com/ (accessed on 12 August 2020).
- Doyle, R.O. The continuous spectrum of the hydrogen quasi-molecule. J. Quant. Spectrosc. Radiat. Transfer. 1968, 492, 1555–1569. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Einstein, A. Relativity: The Special and General Theory; Routledge Classics: London, UK, 1920. [Google Scholar]
- Planck, M. Ueber irreversible Strahlungsvorgänge. Ann. Der Phys. 1900, 306, 69–122. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Zur Quantentheorie der Strahlung (On the Quantum Theory of Radiation). Phys. Z. 1917, 18, 121–128. [Google Scholar]
- Riek, R. On the Einstein-Podolsky-Rosen paradox using discrete time physics. J. Phys. Conf. Ser. 2017, 880, 012029. [Google Scholar] [CrossRef] [Green Version]
- Briggs, J.S. Equivalent emergence of time dependence in classical and quantum mechanics. Phys. Rev. A 2015, 91, 052119. [Google Scholar] [CrossRef] [Green Version]
- Truesdell, C. Rational Thermodynamics; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Lavenda, B.H. Thermodynamics of Irreversible Processes; Macmillan Press: London, UK, 1978. [Google Scholar]
- Lucia, U. Mathematical consequences of Gyarmati’s principle in rational thermodynamics. Il Nuovo CImento B 1995, 110, 1227–1235. [Google Scholar] [CrossRef]
- Gouy, G. Sur les transformation et l’équilibre en Thermodynamique. C. R. De L’Acadèmie Des Sci. Paris 1889, 108, 507–509. [Google Scholar]
- Gouy, G. Sur l’énergie utilisable. J. De Phys. 1889, 8, 501–518. [Google Scholar] [CrossRef]
- Gouy, G. Sur les transformations et l’équilibre en Thermodynamique. Note de M.P. Duhem. C. R. De L’Acadèmie Des Sci. Paris 1889, 108, 666–667. [Google Scholar]
- Gouy, G. Sur l’énergie utilisable et le potentiel thermodynamique. Note de M. Gouy. C. R. De L’Acadèmie Des Sci. Paris 1889, 108, 794. [Google Scholar]
- Stodola, A. Steam turbine; Loewenstein, L.C., Ed.; Translator; Van Nostrand: New York, NY, USA, 1905. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Bridgman, P.W. Dimensional Analysis; Yale University Press: New Haven, CT, USA, 1963. [Google Scholar]
- Gibbings, J.C. Dimensional Analysis; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Mechanics; Butterworth-Heinemann: Oxford, UK, 1976. [Google Scholar]
- Chatterjee, A.; Iannacchione, G. Time and thermodynamics extended discussion on “Time & clocks: A thermodynamic approach”. Results Phys. 2020, 17, 103165. [Google Scholar]
- Goldstein, H. Classical Mechanics; Pearson: London, UK, 2013. [Google Scholar]
- Lanczos, C. The Variational Principles of Mechanics; Dover: Mineola, NY, USA, 1986. [Google Scholar]
- Tuisku, P.; Pernu, T.K.; Annila, A. In the light of time. Proc. R. Soc. A 2009, 465, 1173–1198. [Google Scholar] [CrossRef] [Green Version]
- Mäkelä, T.; Annila, A. Natural patterns of energy dispersal. Phys. Life Rev. 2010, 7, 477–498. [Google Scholar] [CrossRef] [PubMed]
- Annila, A. Evolution of the universe by the principle of least action. Phys. Essays 2017, 310, 248–254. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Grisolia, G.; Kuzemsky, A.L. Time, Irreversibility and Entropy Production in Nonequilibrium Systems. Entropy 2020, 22, 887. https://doi.org/10.3390/e22080887
Lucia U, Grisolia G, Kuzemsky AL. Time, Irreversibility and Entropy Production in Nonequilibrium Systems. Entropy. 2020; 22(8):887. https://doi.org/10.3390/e22080887
Chicago/Turabian StyleLucia, Umberto, Giulia Grisolia, and Alexander L. Kuzemsky. 2020. "Time, Irreversibility and Entropy Production in Nonequilibrium Systems" Entropy 22, no. 8: 887. https://doi.org/10.3390/e22080887
APA StyleLucia, U., Grisolia, G., & Kuzemsky, A. L. (2020). Time, Irreversibility and Entropy Production in Nonequilibrium Systems. Entropy, 22(8), 887. https://doi.org/10.3390/e22080887