The Siegel–Klein Disk: Hilbert Geometry of the Siegel Disk Domain
Abstract
:1. Introduction
1.1. Paper Outline and Contributions
- First, we formulate a generalization of the Klein disk model of hyperbolic geometry to the Siegel disk domain in Definition 2 using the framework of Hilbert geometry. We report the formula of the Siegel–Klein distance to the origin in Theorem 1 (and more generally a closed-form expression for the Siegel–Klein distance between two points whose supporting line passes through the origin), describe how to convert the Siegel–Poincaré disk to the Siegel–Klein disk and vice versa in Proposition 2, report an exact algorithm to calculate the Siegel–Klein distance for diagonal matrices in Theorem 4. In practice, we show how to obtain a fast guaranteed approximation of the Siegel–Klein distance using geodesic bisection searches with guaranteed lower and upper bounds (Theorem 5 whose proof is obtained by considering nested Hilbert geometries).
- Second, we report the exact solution to a geodesic cut problem in the Siegel–Poincaré/Siegel–Klein disks in Proposition 3. This result yields an explicit equation for the geodesic linking the origin of the Siegel disk domain to any other matrix point of the Siegel disk domain (Propositions 3 and 4). We then report an implementation of the Badoiu and Clarkson’s iterative algorithm [47] for approximating the smallest enclosing ball tailored to the Siegel–Poincaré and Siegel–Klein disk domains. In particular, we show in §6 that the implementation in the Siegel–Klein model yields a fast algorithm which bypasses the costly operations of recentering to the origin required in the Siegel–Poincaré disk model.
1.2. Matrix Spaces and Matrix Norms
- with equality if and only if (where 0 denotes the matrix with all its entries equal to zero),
- ,
- , and
- .
2. Hyperbolic Geometry in the Complex Plane: The Poincaré Upper Plane and Disk Models and the Klein Disk Model
2.1. Poincaré Complex Upper Plane
2.2. Poincaré Disk
2.2.1. Klein Disk
2.3. Poincaré and Klein Distances to the Disk Origin and Conversions
2.4. Hyperbolic Fisher–Rao Geometry of Location-Scale Families
3. The Siegel Upper Space and the Siegel Distance
- When and , we haveIn that case, the Siegel upper metric for becomes the affine-invariant metric:Indeed, we have for any and
- In 1D, the Siegel upper distance between and (with and in ) amounts to the hyperbolic distance on the Poincaré upper plane :
- The Siegel distance between two diagonal matrices and isObserve that the Siegel distance is a non-separable metric distance, but its squared distance is separable when the matrices are diagonal:
4. The Siegel Disk Domain and the Kobayashi Distance
- Distance to the origin: When and , we have , and therefore the distance in the disk between a matrix W and the origin 0 is:In particular, when , we recover the formula of Equation (31): .
- When , we have and , and
- Consider diagonal matrices and . We have for . Thus, the diagonal matrices belong to the polydisk domain. Then we haveNotice that the polydisk domain is a Cartesian product of 1D complex disk domains, but it is not the unit d-dimensional complex ball .
5. The Siegel–Klein Geometry: Distance and Geodesics
5.1. Background on Hilbert Geometry
5.2. Hilbert Geometry of the Siegel Disk Domain
5.3. Calculating and Approximating the Siegel–Klein Distance
5.4. Siegel–Klein Distance to the Origin
5.5. Converting Siegel–Poincaré Matrices from/to Siegel–Klein Matrices
- Converting K to W: We convert a matrix K in the Siegel–Klein model to an equivalent matrix W in the Siegel–Poincaré model as follows:This conversion corresponds to a radial contraction with respect to the origin 0 since (with equality for matrices belonging to the Shilov boundary).
- Converting W to K: We convert a matrix W in the Siegel–Poincaré model to an equivalent matrix K in the Siegel–Klein model as follows:This conversion corresponds to a radial expansion with respect to the origin 0 since (with equality for matrices on the Shilov boundary).
5.6. Siegel–Klein Distance between Diagonal Matrices
5.7. A Fast Guaranteed Approximation of the Siegel–Klein Distance
5.8. Hilbert-Fröbenius Distances and Fast Simple Bounds on the Siegel–Klein Distance
6. The Smallest Enclosing Ball in the SPD Manifold and in the Siegel Spaces
- Initialization: Let and
- Repeat L times:
- -
- Calculate the farthest point: .
- -
- Geodesic cut: Let , where is the point which satisfies
- -
- .
6.1. Approximating the Smallest Enclosing Ball in Riemannian Spaces
Approximating the SEB on the SPD Manifold
- The SEB is well-defined and unique since the SPD manifold is a Bruhat–Tits space: That is, a complete metric space enjoying a semi-parallelogram law: For any and geodesic midpoint (see below), we have:
- Another proof of the uniqueness of the SEB on a SPD manifold consists of noticing that the SPD manifold is a Cartan-Hadamard manifold [46], and the SEB on Cartan-Hadamard manifolds are guaranteed to be unique.
Algorithm 1: Algorithm to approximate the circumcenter of a set of positive-definite matrices. |
Algorithm 2: Algorithm to approximate the Riemannian circumcenter of a set of points. |
6.2. Implementation in the Siegel–Poincaré Disk
Algorithm 3: Algorithm to approximate the circumcenter of a set of matrices in the Siegel disk. |
6.3. Fast Implementation in the Siegel–Klein Disk
7. Conclusions and Perspectives
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Complex matrices: | |
Number field | Real or complex |
Space of square matrices in | |
Space of real symmetric matrices | |
0 | matrix with all coefficients equal to zero (disk origin) |
Fröbenius norm | |
Operator norm | |
Domains: | |
Cone of SPD matrices | |
Siegel–Poincaré upper plane | |
Siegel–Poincaré disk | |
Distances: | |
Siegel distance | |
Upper plane metric | |
PD distance | |
PD metric | |
Kobayashi distance | |
Translation in the disk | |
Disk distance to origin | |
Siegel–Klein distance | |
(), () | |
Seigel-Klein distance to 0 | |
Symplectic maps and groups: | |
Symplectic map | with (upper plane) |
with (disk) | |
Symplectic group | |
group composition law | matrix multiplication |
group inverse law | |
Translation in of to | |
symplectic orthogonal matrices | |
(rotations in ) | |
Translation to 0 in | |
Isometric orientation-preserving group of generic space | |
group of Möbius transformations |
Appendix A. The Deflation Method: Approximating the Eigenvalues
- Let and .
- Initialize at random a normalized vector (i.e., on the unit sphere with )
- For j in :
- Let and
- Let . If then let and goto 2.
- Snippet Code
- /* Code in Maxima */
- /* Calculate the Siegel metric distance in the Siegel upper space */
- load(eigen);
- /* symmetric */
- S1: matrix( [0.265, 0.5],
- [0.5 , -0.085]);
- /* positive-definite */
- P1: matrix( [0.235, 0.048],
- [0.048 , 0.792]);
- /* Matrix in the Siegel upper space */
- Z1: S1+%i*P1;
- S2: matrix( [-0.329, -0.2],
- [-0.2 , -0.382]);
- P2: matrix([0.464, 0.289],
- [0.289 , 0.431]);
- Z2: S2+%i*P2;
- /* Generalized Moebius transformation */
- R(Z1,Z2) :=
- ((Z1-Z2).invert(Z1-conjugate(Z2))).((conjugate(Z1)-conjugate(Z2)).invert(conjugate(Z1)-Z2));
- R12: ratsimp(R(Z1,Z2));
- ratsimp(R12[2][1]-conjugate(R12[1][2]));
- /* Retrieve the eigenvalues: They are all reals */
- r: float(eivals(R12))[1];
- /* Calculate the Siegel distance */
- distSiegel: sum(log( (1+sqrt(r[i]))/(1-sqrt(r[i])) )**2, i, 1, 2);
References
- Siegel, C.L. Symplectic geometry. Am. J. Math. 1943, 65, 1–86. [Google Scholar] [CrossRef]
- Hua, L.K. On the theory of automorphic functions of a matrix variable I: Geometrical basis. Am. J. Math. 1944, 66, 470–488. [Google Scholar] [CrossRef]
- Siegel, C.L. Einführung in die Theorie der Modulfunktionen n-ten Grades. Math. Ann. 1939, 116, 617–657. [Google Scholar] [CrossRef]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Freitas, P.J. On the Action of the Symplectic Group on the Siegel upper Half Plane. Ph.D. Thesis, University of Illinois at Chicago, Chicago, IL, USA, 1999. [Google Scholar]
- Koufany, K. Analyse et Géométrie des Domaines Bornés Symétriques. Ph.D. Thesis, Université Henri Poincaré, Nancy, France, 2006. [Google Scholar]
- Cartan, É. Sur les domaines bornés homogènes de l’espace de n variables complexes. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg; Springer: Berlin/Heidelberg, Germany, 1935; Volume 11, pp. 116–162. [Google Scholar]
- Koszul, J.L. Exposés sur les Espaces Homogènes Symétriques; Sociedade de Matematica: Rio de Janeiro, Brazil, 1959. [Google Scholar]
- Berezin, F.A. Quantization in complex symmetric spaces. Math. USSR-Izv. 1975, 9, 341. [Google Scholar] [CrossRef]
- Förstner, W.; Moonen, B. A metric for covariance matrices. In Geodesy-the Challenge of the 3rd Millennium; Springer: Berlin/Heidelberg, Germany, 2003; pp. 299–309. [Google Scholar]
- Harandi, M.T.; Salzmann, M.; Hartley, R. From manifold to manifold: Geometry-aware dimensionality reduction for SPD matrices. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 17–32. [Google Scholar]
- Barbaresco, F. Innovative tools for radar signal processing based on Cartan’s geometry of SPD matrices & information geometry. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6. [Google Scholar]
- Barbaresco, F. Robust statistical radar processing in Fréchet metric space: OS-HDR-CFAR and OS-STAP processing in Siegel homogeneous bounded domains. In Proceedings of the 12th IEEE International Radar Symposium (IRS), Leipzig, Germany, 7–9 September 2011; pp. 639–644. [Google Scholar]
- Barbaresco, F. Information geometry of covariance matrix: Cartan-Siegel homogeneous bounded domains, Mostow/Berger fibration and Fréchet median. In Matrix Information Geometry; Springer: Berlin/Heidelberg, Germany, 2013; pp. 199–255. [Google Scholar]
- Barbaresco, F. Information geometry manifold of Toeplitz Hermitian positive definite covariance matrices: Mostow/Berger fibration and Berezin quantization of Cartan-Siegel domains. Int. J. Emerg. Trends Signal Process. 2013, 1, 1–11. [Google Scholar]
- Jeuris, B.; Vandebril, R. The Kähler mean of block-Toeplitz matrices with Toeplitz structured blocks. SIAM J. Matrix Anal. Appl. 2016, 37, 1151–1175. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Si, J. Positive Toeplitz operators on the Bergman spaces of the Siegel upper half-space. Commun. Math. Stat. 2019, 8, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Chevallier, E.; Forget, T.; Barbaresco, F.; Angulo, J. Kernel density estimation on the Siegel space with an application to radar processing. Entropy 2016, 18, 396. [Google Scholar] [CrossRef] [Green Version]
- Burbea, J. Informative Geometry of Probability Spaces; Technical report; Pittsburgh Univ. PA Center: Pittsburgh, PA, USA, 1984. [Google Scholar]
- Calvo, M.; Oller, J.M. A distance between multivariate normal distributions based in an embedding into the Siegel group. J. Multivar. Anal. 1990, 35, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Calvo, M.; Oller, J.M. A distance between elliptical distributions based in an embedding into the Siegel group. J. Comput. Appl. Math. 2002, 145, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Rong, Y.; Zhou, J. An information geometric viewpoint on the detection of range distributed targets. Math. Probl. Eng. 2015, 2015. [Google Scholar] [CrossRef]
- Tang, M.; Rong, Y.; Zhou, J.; Li, X.R. Information geometric approach to multisensor estimation fusion. IEEE Trans. Signal Process. 2018, 67, 279–292. [Google Scholar] [CrossRef]
- Krefl, D.; Carrazza, S.; Haghighat, B.; Kahlen, J. Riemann-Theta Boltzmann machine. Neurocomputing 2020, 388, 334–345. [Google Scholar] [CrossRef]
- Ohsawa, T. The Siegel upper half space is a Marsden–Weinstein quotient: Symplectic reduction and Gaussian wave packets. Lett. Math. Phys. 2015, 105, 1301–1320. [Google Scholar] [CrossRef] [Green Version]
- Froese, R.; Hasler, D.; Spitzer, W. Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs. J. Funct. Anal. 2006, 230, 184–221. [Google Scholar] [CrossRef] [Green Version]
- Ohsawa, T.; Tronci, C. Geometry and dynamics of Gaussian wave packets and their Wigner transforms. J. Math. Phys. 2017, 58, 092105. [Google Scholar] [CrossRef]
- Lenz, R. Siegel Descriptors for Image Processing. IEEE Signal Process. Lett. 2016, 23, 625–628. [Google Scholar] [CrossRef] [Green Version]
- Richter-Gebert, J. Perspectives on Projective Geometry: A Guided Tour through Real and Complex Geometry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Hilbert, D. Über die gerade Linie als kürzeste Verbindung zweier Punkte (About the straight line as the shortest connection between two points). Math. Ann. 1895, 46, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.; Troyanov, M. Handbook of Hilbert Geometry, Volume 22 of IRMA Lectures in Mathematics and Theoretical Physics; European Mathematical Society (EMS): Zürich, Switzerland, 2014. [Google Scholar]
- Liverani, C.; Wojtkowski, M.P. Generalization of the Hilbert metric to the space of positive definite matrices. Pac. J. Math. 1994, 166, 339–355. [Google Scholar] [CrossRef] [Green Version]
- Boissonnat, J.D.; Yvinec, M. Algorithmic Geometry; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Nielsen, F.; Nock, R. Hyperbolic Voronoi diagrams made easy. In Proceedings of the 2010 IEEE International Conference on Computational Science and Its Applications, Fukuoka, Japan, 23–26 March 2010; pp. 74–80. [Google Scholar]
- Nielsen, F.; Muzellec, B.; Nock, R. Classification with mixtures of curved Mahalanobis metrics. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 241–245. [Google Scholar]
- Nielsen, F.; Nock, R. Visualizing hyperbolic Voronoi diagrams. In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, Kyoto, Japan, 8–11 June 2014; pp. 90–91. [Google Scholar]
- Nielsen, F.; Nock, R. The hyperbolic Voronoi diagram in arbitrary dimension. arXiv 2012, arXiv:1210.8234. [Google Scholar]
- Angulo, J.; Velasco-Forero, S. Morphological processing of univariate Gaussian distribution-valued images based on Poincaré upper-half plane representation. In Geometric Theory of Information; Springer: Berlin/Heidelberg, Germany, 2014; pp. 331–366. [Google Scholar]
- Tavallaee, M.; Lu, W.; Iqbal, S.A.; Ghorbani, A.A. A novel covariance matrix based approach for detecting network anomalies. In Proceedings of the 6th IEEE Annual Communication Networks and Services Research Conference (cnsr 2008), Halifax, NS, Canada, 5–8 May 2008; pp. 75–81. [Google Scholar]
- Cont, A.; Dubnov, S.; Assayag, G. On the information geometry of audio streams with applications to similarity computing. IEEE Trans. Audio Speech Lang. Process. 2010, 19, 837–846. [Google Scholar] [CrossRef]
- Mazumdar, A.; Polyanskiy, Y.; Saha, B. On Chebyshev radius of a set in hamming space and the closest string problem. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 1401–1405. [Google Scholar]
- Welzl, E. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends in Computer Science; Springer: Berlin/Heidelberg, Germany, 1991; pp. 359–370. [Google Scholar]
- Nielsen, F.; Hadjeres, G. Approximating covering and minimum enclosing balls in hyperbolic geometry. In Proceedings of the International Conference on Geometric Science of Information, Palaiseau, France, 28–30 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 586–594. [Google Scholar]
- Lang, S. Math Talks for Undergraduates; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Nielsen, F.; Bhatia, R. Matrix Information Geometry; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Arnaudon, M.; Nielsen, F. On approximating the Riemannian 1-center. Comput. Geom. 2013, 46, 93–104. [Google Scholar] [CrossRef]
- Badoiu, M.; Clarkson, K.L. Smaller core-sets for balls. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, USA, 12–14 January 2003; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2003; pp. 801–802. [Google Scholar]
- Tsang, I.H.; Kwok, J.Y.; Zurada, J.M. Generalized core vector machines. IEEE Trans. Neural Netw. 2006, 17, 1126–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulsen, V.I.; Raghupathi, M. An Introduction to the Theory of Reproducing Kernel Hilbert Spaces; Cambridge University Press: Cambridge, UK, 2016; Volume 152. [Google Scholar]
- Nielsen, F.; Nock, R. Fast (1+ϵ)-Approximation of the Löwner Extremal Matrices of High-Dimensional Symmetric Matrices. In Computational Information Geometry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 121–132. [Google Scholar]
- Moakher, M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 2005, 26, 735–747. [Google Scholar] [CrossRef]
- Niculescu, C.; Persson, L.E. Convex Functions and Their Applications: A Contemporary Approach, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Lanczos, C. An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators1. J. Res. Natl. Bur. Stand. 1950, 45, 255–282. [Google Scholar] [CrossRef]
- Cullum, J.K.; Willoughby, R.A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations: Vol. 1: Theory; SIAM: Philadelphia, PA, USA, 2002; Volume 41. [Google Scholar]
- Cannon, J.W.; Floyd, W.J.; Kenyon, R.; Parry, W.R. Hyperbolic geometry. Flavors Geom. 1997, 31, 59–115. [Google Scholar]
- Goldman, W.M. Complex Hyperbolic Geometry; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Amari, S.I. Information Geometry and Its Applications; Springer: Berlin/Heidelberg, Germany, 2016; Volume 194. [Google Scholar]
- Nielsen, F. An elementary introduction to information geometry. arXiv 2018, arXiv:1808.08271. [Google Scholar]
- Ratcliffe, J.G. Foundations of Hyperbolic Manifolds; Springer: Berlin/Heidelberg, Germany, 1994; Volume 3. [Google Scholar]
- Jin, M.; Gu, X.; He, Y.; Wang, Y. Conformal Geometry: Computational Algorithms and Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hotelling, H. Spaces of statistical parameters. Bull. Am. Math. Soc. 1930, 36, 191. [Google Scholar]
- Rao, C.R. Information and accuracy attainable in the estimation of statistical parameters. Bull Calcutta. Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Nielsen, F. Cramér-Rao lower bound and information geometry. In Connected at Infinity II; Springer: Berlin/Heidelberg, Germany, 2013; pp. 18–37. [Google Scholar]
- Sun, K.; Nielsen, F. Relative Fisher information and natural gradient for learning large modular models. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3289–3298. [Google Scholar]
- Komaki, F. Bayesian prediction based on a class of shrinkage priors for location-scale models. Ann. Inst. Stat. Math. 2007, 59, 135–146. [Google Scholar] [CrossRef]
- Namikawa, Y. The Siegel upperhalf plane and the symplectic group. In Toroidal Compactification of Siegel Spaces; Springer: Berlin/Heidelberg, Germany, 1980; pp. 1–6. [Google Scholar]
- Riemann, B. Theorie der Abel’schen Functionen. J. Für Die Reine Und Angew. Math. 1857, 54, 101–155. [Google Scholar]
- Riemann, B. Über das Verschwinden der Theta-Functionen. Borchardt’s [= Crelle’s] J. Für Reine Und Angew. Math. 1865, 65, 214–224. [Google Scholar]
- Swierczewski, C.; Deconinck, B. Computing Riemann Theta functions in Sage with applications. Math. Comput. Simul. 2016, 127, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Agostini, D.; Chua, L. Computing Theta Functions with Julia. arXiv 2019, arXiv:1906.06507. [Google Scholar]
- Agostini, D.; Améndola, C. Discrete Gaussian distributions via theta functions. SIAM J. Appl. Algebra Geom. 2019, 3, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Bucy, R.; Williams, B. A matrix cross ratio theorem for the Riccati equation. Comput. Math. Appl. 1993, 26, 9–20. [Google Scholar] [CrossRef]
- Mackey, D.S.; Mackey, N. On the Determinant of Symplectic Matrices; Manchester Centre for Computational Mathematics: Manchester, UK, 2003. [Google Scholar]
- Rim, D. An elementary proof that symplectic matrices have determinant one. Adv. Dyn. Syst. Appl. (ADSA) 2017, 12, 15–20. [Google Scholar]
- Hua, L.K. Geometries of matrices. II. Study of involutions in the geometry of symmetric matrices. Trans. Am. Math. Soc. 1947, 61, 193–228. [Google Scholar] [CrossRef]
- Wan, Z.; Hua, L. Geometry of matrices; World Scientific: Singapore, 1996. [Google Scholar]
- Clerc, J.L. Geometry of the Shilov boundary of a bounded symmetric domain. In Proceedings of the Tenth International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 6–11 June 2008; Institute of Biophysics and Biomedical Engineering, Bulgarian Academy: Varna, Bulgaria, 2009; pp. 11–55. [Google Scholar]
- Freitas, P.J.; Friedland, S. Revisiting the Siegel upper half plane II. Linear Algebra Its Appl. 2004, 376, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Bassanelli, G. On horospheres and holomorphic endomorfisms of the Siegel disc. Rend. Del Semin. Mat. Della Univ. Padova 1983, 70, 147–165. [Google Scholar]
- Kobayashi, S. Invariant distances on complex manifolds and holomorphic mappings. J. Math. Soc. Jpn. 1967, 19, 460–480. [Google Scholar] [CrossRef]
- Carathéodory, C. Uber eine spezielle Metrik, die in der Theorie der analytischen Funktionen auftritt. Atti Pontif. Acad. Sc. Nuovi Lincei 1927, 80, 135–141. [Google Scholar]
- Sra, S. On the matrix square root via geometric optimization. arXiv 2015, arXiv:1507.08366. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J. Potential theory in the geometry of matrices. Trans. Am. Math. Soc. 1955, 79, 401–422. [Google Scholar] [CrossRef]
- Rong, F. Non-diagonal holomorphic isometric embeddings of the Poincaré disk into the Siegel upper half-plane. Asian J. Math. 2018, 22, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Beardon, A. The Klein, Hilbert and Poincaré metrics of a domain. J. Comput. Appl. Math. 1999, 105, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, F.; Sun, K. Clustering in Hilbert’s Projective Geometry: The Case Studies of the Probability Simplex. Geom. Struct. Inf. 2018, 297–331. [Google Scholar]
- Nielsen, F.; Shao, L. On Balls in a Hilbert Polygonal Geometry (Multimedia Contribution). In Proceedings of the 33rd International Symposium on Computational Geometry (SoCG 2017), Brisbane, Australia, 4–7 July 2017; Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2017. [Google Scholar]
- Klein, F. Über die sogenannte nicht-Euklidische Geometrie. Math. Ann. 1873, 6, 112–145. [Google Scholar] [CrossRef]
- Beltrami, E. Saggio di interpretazione della geometria non-euclidea. G. Mat. 1868, IV, 284. [Google Scholar]
- Cayley, A. A sixth memoir upon quantics. Philos. Trans. R. Soc. Lond. 1859, 149, 61–90. [Google Scholar]
- De La Harpe, P. On Hilbert’s metric for simplices. Geom. Group Theory 1993, 1, 97–119. [Google Scholar]
- Marsaglia, G. Bounds for the Rank of the Sum of Two Matrices; Technical report; BOEING SCIENTIFIC RESEARCH LABS: Seattle, WA, USA, 1964. [Google Scholar]
- Speer, T. Isometries of the Hilbert metric. arXiv 2014, arXiv:1411.1826. [Google Scholar]
- El Ghaoui, L.; Niculescu, S.L. Advances in Linear Matrix Inequality Methods in Control; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Bustamante, M.D.; Mellon, P.; Velasco, M. Solving the problem of simultaneous diagonalisation via congruence. arXiv 2019, arXiv:1908.04228. [Google Scholar]
- Kuczyński, J.; Woźniakowski, H. Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl. 1992, 13, 1094–1122. [Google Scholar] [CrossRef]
- Higham, N.J.; Al-Mohy, A.H. Computing matrix functions. Acta Numer. 2010, 19, 159–208. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Woodruff, D.P. Tight bounds for sketching the operator norm, Schatten norms, and subspace embeddings. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM); Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2016. [Google Scholar]
- Nock, R.; Nielsen, F. Fitting the smallest enclosing Bregman ball. In Proceedings of the European Conference on Machine Learning, Porto, Portugal, 3–7 October 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 649–656. [Google Scholar]
- Nielsen, F.; Nock, R. On approximating the smallest enclosing Bregman balls. In Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, Sedona, AZ, USA, 5–7 June 2006; pp. 485–486. [Google Scholar]
- Nielsen, F.; Boissonnat, J.D.; Nock, R. Visualizing Bregman Voronoi diagrams. In Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, Gyeongju, Korea, 6–8 June 2007; pp. 121–122. [Google Scholar]
- Boissonnat, J.D.; Nielsen, F.; Nock, R. Bregman Voronoi diagrams. Discret. Comput. Geom. 2010, 44, 281–307. [Google Scholar] [CrossRef]
- Bougerol, P. Kalman filtering with random coefficients and contractions. SIAM J. Control. Optim. 1993, 31, 942–959. [Google Scholar] [CrossRef]
- Fletcher, P.T.; Moeller, J.; Phillips, J.M.; Venkatasubramanian, S. Horoball hulls and extents in positive definite space. In Workshop on Algorithms and Data Structures; Springer: Berlin/Heidelberg, Germany, 2011; pp. 386–398. [Google Scholar]
- Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2009; Volume 24. [Google Scholar]
- Bruhat, F.; Tits, J. Groupes réductifs sur un corps local: I. Données radicielles valuées. Publ. Math. De L’IHÉS 1972, 41, 5–251. [Google Scholar] [CrossRef]
- Mostajeran, C.; Grussler, C.; Sepulchre, R. Affine-Invariant Midrange Statistics. In Proceedings of the International Conference on Geometric Science of Information, Toulouse, France, 27–29 August 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 494–501. [Google Scholar]
- Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Andai, A. Information geometry in quantum mechanics. Ph.D. Thesis, BUTE, Dhaka, Bangladesh, 2004. (In Hungarian). [Google Scholar]
- Angulo, J. Structure tensor image filtering using Riemannian L1 and L∞ center-of-mass. Image Anal. Stereol. 2014, 33, 95–105. [Google Scholar] [CrossRef] [Green Version]
- D’Atri, J.; Dotti Miatello, I. A characterization of bounded symmetric domains by curvature. Trans. Am. Math. Soc. 1983, 276, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, F.; Piro, P.; Barlaud, M. Bregman vantage point trees for efficient nearest neighbor queries. In Proceedings of the 2009 IEEE International Conference on Multimedia and Expo, New York, NY, USA, 28 June–3 July 2009; pp. 878–881. [Google Scholar]
- Hua, L.K. The estimation of the Riemann curvature in several complex variables. Acta Math. Sin. Chin. Ser. 1954, 4, 143–170. [Google Scholar]
- Loehr, N. Advanced Linear Algebra; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Izaac, J.; Wang, J. Computational Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sun, J.; Zhou, A. Finite Element Methods for Eigenvalue Problems; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, F. The Siegel–Klein Disk: Hilbert Geometry of the Siegel Disk Domain. Entropy 2020, 22, 1019. https://doi.org/10.3390/e22091019
Nielsen F. The Siegel–Klein Disk: Hilbert Geometry of the Siegel Disk Domain. Entropy. 2020; 22(9):1019. https://doi.org/10.3390/e22091019
Chicago/Turabian StyleNielsen, Frank. 2020. "The Siegel–Klein Disk: Hilbert Geometry of the Siegel Disk Domain" Entropy 22, no. 9: 1019. https://doi.org/10.3390/e22091019
APA StyleNielsen, F. (2020). The Siegel–Klein Disk: Hilbert Geometry of the Siegel Disk Domain. Entropy, 22(9), 1019. https://doi.org/10.3390/e22091019