Modification of the Electron Entropy Production in a Plasma
Abstract
:1. Introduction
2. Usual Deduction of the Entropy Production
2.1. Standard Deduction of Entropy Production
2.2. Electron Entropy Production in Terms of the Hermitian Moments
3. Equations of State for the Kelly Plasma
3.1. Preliminaries
3.2. Entropy
3.3. the Hessian of the Kelly Plasma
4. Modified Electron Entropy Production
4.1. Deduction of the Modified Entropy Production
4.2. Deduction of the Modified Electron Entropy Production in Terms of the Hermitian Moments
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clausius, R. Ueber eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheoriein. Ann. Phys. Chem. 1854, 93, 481–506. [Google Scholar] [CrossRef] [Green Version]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes, 2nd ed.; Interscience Publishers: New York, NY, USA, 1961. [Google Scholar]
- Hinton, F.; Hazeltine, R. Theory of plasma transport in toroidal confinement systems. Rev. Mod. Phys. 1976, 48, 239–308. [Google Scholar] [CrossRef]
- Balescu, R. Transport Processes in Plasmas; North Holland: Amsterdam, The Netherlands, 1988; Volume 1. [Google Scholar]
- Grad, H. On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 1949, 2, 311. [Google Scholar] [CrossRef]
- Sonnino, G.; Evslin, J.; Sonnino, A.; Steinbrecher, G.; Tirapegui, E. Symmetry group and group representations associated with the thermodynamic covariance principle. Phys. Rev. E 2016, 95, 042103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debye, P.; Hückel, E. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Z. 1923, 24, 185–206. [Google Scholar]
- Kontogeorgis, G.; Maribo-Mogensen, B.; Thomsen, K. The Debye-Hückel theory and its importance in modeling electrolyte solutions. Fluid Phase Equilib. 2018, 462, 130–152. [Google Scholar] [CrossRef] [Green Version]
- Kirwood, G.; Poirier, J. The Statistical Mechanical Basis of the Debye-Hückel Theory of Strong Electrolytes. J. Phys. Chem. 1954, 58, 591. [Google Scholar] [CrossRef]
- Kelly, D. Plasma Equation of State. Am. J. Phys. 1963, 31, 827. [Google Scholar] [CrossRef]
- Wergeland, H. Remark on the Plasma Equation of State. Am. J. Phys. 1964, 32, 566. [Google Scholar] [CrossRef]
- Liboff, R.; Lie, T. Plasma Virial and Equations of State for a Plasma. Phys. Fluids 1968, 11, 1943. [Google Scholar] [CrossRef]
- Kaur, M.; Barbano, L.; Suen-Lewis, E.; Shrock, J.; Light, A.; Brown, M.; Schaffner, D. Measuring the equations of state in a relaxed magnetohydrodynamic plasma. Phys. Rev. E 2018, 97, 011202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krall, N.A.; Trivelpiece, A.W. Principles of Plasma Physics; McGraw-Hill: New York, NY, USA, 1973. [Google Scholar]
- Callen, H. Thermodynamics and an Introduction to Thermostatistics; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Essex, C.; Andresen, B. The principal equations of state for classical particles, photons, and neutrinos. J. Non-Equilib. Thermodyn. 2013, 38, 293–312. [Google Scholar] [CrossRef] [Green Version]
- Arango-Reyes, K.; Ares de Parga, G. Completeness of Classical Thermodynamics: The Ideal Gas, the Unconventional Systems, the Rubber Band, the Paramagnetic Solid and the Kelly Plasma. Entropy 2020, 22, 398. [Google Scholar] [CrossRef] [Green Version]
- Sugama, M.; Horton, W. Transport processes and entropy production in toroidally rotating plasmas with electrostatic turbulence. Phys. Plasmas 1997, 4, 405. [Google Scholar] [CrossRef] [Green Version]
- Abel, I.G.; Plunk, G.G.; Wang, E.; Barnes, M.; Cowley, S.C.; Dorland, W.; Schekochihin, A.A. Multiscale gyrokinetics for rotating tokamak plasmas: Fluctuations, transport and energy flows. Rep. Prog. Phys. 2013, 76, 116201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizarro, J.P.S. A thermodynamical analysis of rf current drive with fast electrons. Phys. Plasmas 2015, 22, 082510. [Google Scholar] [CrossRef]
- Riviere, A.C. Penetration of fast hydrogen atoms into a fusion reactor. Nucl. Fusion 1971, 11, 363–369. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 1931, 37, 405. [Google Scholar] [CrossRef]
- Izacard, O. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas. Phys. Plasmas 2016, 23, 082504. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Camacho, J.F.; Ares de Parga, G.; Arango-Reyes, K.; Salinas-Hernández, E.; Domínguez-Hernández, S. Modification of the Electron Entropy Production in a Plasma. Entropy 2020, 22, 935. https://doi.org/10.3390/e22090935
García-Camacho JF, Ares de Parga G, Arango-Reyes K, Salinas-Hernández E, Domínguez-Hernández S. Modification of the Electron Entropy Production in a Plasma. Entropy. 2020; 22(9):935. https://doi.org/10.3390/e22090935
Chicago/Turabian StyleGarcía-Camacho, Juan F., Gonzalo Ares de Parga, Karen Arango-Reyes, Encarnación Salinas-Hernández, and Samuel Domínguez-Hernández. 2020. "Modification of the Electron Entropy Production in a Plasma" Entropy 22, no. 9: 935. https://doi.org/10.3390/e22090935
APA StyleGarcía-Camacho, J. F., Ares de Parga, G., Arango-Reyes, K., Salinas-Hernández, E., & Domínguez-Hernández, S. (2020). Modification of the Electron Entropy Production in a Plasma. Entropy, 22(9), 935. https://doi.org/10.3390/e22090935