Two-Excitation Routing via Linear Quantum Channels
Abstract
:1. Introduction
2. Many-Body Dynamics in Non-Interacting Fermions on a Discrete Lattice
3. The Model
3.1. Routing with Switchable Weak Couplings
3.2. Routing with Permanent Weak Couplings
4. Routing in Spin Systems
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amico, L.; Boshier, M.; Birkl, G.; Minguzzi, A.; Miniatura, C.; Kwek, L.C.; Aghamalyan, D.; Ahufinger, V.; Andrei, N.; Arnold, A.S.; et al. Roadmap on Atomtronics. 2020. Available online: https://hal.archives-ouvertes.fr/hal-02933999/ (accessed on 30 December 2020).
- Nikolopoulos, G.M.; Jex, I. Quantum State Transfer and Network Engineering; Springer: Berlin, Germany, 2014; pp. 1–250. [Google Scholar] [CrossRef] [Green Version]
- Paganelli, S.; Lorenzo, S.; Apollaro, T.J.G.; Plastina, F.; Giorgi, G.L. Routing quantum information in spin chains. Phys. Rev. A 2013, 87, 062309. [Google Scholar] [CrossRef] [Green Version]
- Yousefjani, R.; Bayat, A. Simultaneous multiple-user quantum communication across a spin-chain channel. Phys. Rev. A 2020, 102, 012418. [Google Scholar] [CrossRef]
- Bayat, A.; Bose, S.; Sodano, P. Entanglement Routers Using Macroscopic Singlets. Phys. Rev. Lett. 2010, 105, 187204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousefjani, R.; Bayat, A. Parallel Entangling Gate Operations and Two-Way Quantum Communication in Spin Chains. arXiv 2020, arXiv:2008.12771. Available online: https://arxiv.org/abs/2008.12771 (accessed on 30 December 2020).
- Zueco, D.; Galve, F.; Kohler, S.; Hänggi, P. Quantum router based on ac control of qubit chains 1. Phys. Rev. A 2009, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; He, Y.Z.; Chu, T.T.; Shen, Q.H.; Zhang, J.M.; Peng, Y.D. Efficient routing quantum information in one-dimensional tight-binding array. Prog. Theor. Exp. Phys. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Wanisch, D.; Fritzsche, S. Driven spin chains as high-quality quantum routers. Phys. Rev. A 2020, 102, 032624. [Google Scholar] [CrossRef]
- Pemberton-Ross, P.J.; Kay, A. Perfect Quantum Routing in Regular Spin Networks. Phys. Rev. Lett. 2011, 106, 020503. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Qin, H.; Bian, Z.H.; Li, J.; Xue, P. Perfect state transfer and efficient quantum routing: A discrete-time quantum-walk approach. Phys. Rev. A 2014, 90, 012331. [Google Scholar] [CrossRef] [Green Version]
- Bose, S. Quantum Communication through an Unmodulated Spin Chain. Phys. Rev. Lett. 2003, 91, 207901. [Google Scholar] [CrossRef] [Green Version]
- Apollaro, T.J.G.; Lorenzo, S.; Sindona, A.; Paganelli, S.; Giorgi, G.L.; Plastina, F. Many-qubit quantum state transfer via spin chains. Phys. Scr. 2015, T165, 014036. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, S.; Apollaro, T.J.G.; Trombettoni, A.; Paganelli, S. 2-qubit quantum state transfer in spin chains and cold atoms with weak links. Int. J. Quantum Inf. 2017, 15, 1750037. [Google Scholar] [CrossRef]
- Lorenzo, S.; Apollaro, T.; Paganelli, S.; Palma, G.; Plastina, F. Transfer of arbitrary two qubit states via a spin chain. Phys. Rev. A 2015, 91, 42321. [Google Scholar] [CrossRef]
- Sousa, R.; Omar, Y. Pretty good state transfer of entangled states through quantum spin chains. New J. Phys. 2014, 16, 123003. [Google Scholar] [CrossRef] [Green Version]
- Vieira, R.; Rigolin, G. Robust and efficient transport of two-qubit entanglement via disordered spin chains. Quantum Inf. Process. 2019, 123. [Google Scholar] [CrossRef] [Green Version]
- Vieira, R.; Rigolin, G. Almost perfect transport of an entangled two-qubit state through a spin chain. Phys. Lett. A 2018, 382, 2586–2594. [Google Scholar] [CrossRef] [Green Version]
- Vieira, R.; Rigolin, G. Almost perfect transmission of multipartite entanglement through disordered and noisy spin chains. Phys. Lett. A 2020, 384, 126536. [Google Scholar] [CrossRef]
- Apollaro, T.J.; Sanavio, C.; Chetcuti, W.J.; Lorenzo, S. Multipartite entanglement transfer in spin chains. Phys. Lett. A 2020, 384, 126306. [Google Scholar] [CrossRef] [Green Version]
- Almeida, G.M.; Souza, A.M.; de Moura, F.A.; Lyra, M.L. Robust entanglement transfer through a disordered qubit ladder. Phys. Lett. A 2019, 383, 125847. [Google Scholar] [CrossRef]
- Verma, H.; Chotorlishvili, L.; Berakdar, J.; Mishra, S.K. Qubit(s) transfer in helical spin chains. Epl 2017, 119. [Google Scholar] [CrossRef] [Green Version]
- Kay, A. Basics of perfect communication through quantum networks. Phys. Rev. A 2011, 84, 022337. [Google Scholar] [CrossRef] [Green Version]
- Lieb, E.; Schultz, T.; Mattis, D. Two soluble models of an antiferromagnetic chain. Ann. Phys. 1961, 16, 407–466. [Google Scholar] [CrossRef]
- Chetcuti, W.J.; Sanavio, C.; Lorenzo, S.; Apollaro, T.J.G. Perturbative many-body transfer. New J. Phys. 2020, 22, 033030. [Google Scholar] [CrossRef]
- Bruus, H.; Flensberg, K. Many-Body Quantum Theory in Condensed Matter Physics—An Introduction; World Scientific: Singapore, 2004. [Google Scholar]
- Apollaro, T.J.G.; Almeida, G.M.A.; Lorenzo, S.; Ferraro, A.; Paganelli, S. Spin chains for two-qubit teleportation. Phys. Rev. A 2019, 100, 052308. [Google Scholar] [CrossRef] [Green Version]
- Banchi, L.; Vaia, R. Spectral problem for quasi-uniform nearest-neighbor chains. J. Math. Phys. 2013, 54, 043501. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, P.; Bukov, M. QuSpin: A Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: Bosons, fermions and higher spins. Scipost Phys. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Zwick, A.; Álvarez, G.A.; Stolze, J.; Osenda, O. Spin chains for robust state transfer: Modified boundary couplings versus completely engineered chains. Phys. Rev. A 2012, 85, 012318. [Google Scholar] [CrossRef] [Green Version]
- Zwick, A.; Álvarez, G.A.; Bensky, G.; Kurizki, G. Optimized dynamical control of state transfer through noisy spin chains. New J. Phys. 2014, 16, 065021. [Google Scholar] [CrossRef] [Green Version]
- Almeida, G.M.; de Moura, F.A.; Lyra, M.L. Quantum-state transfer through long-range correlated disordered channels. Phys. Lett. A 2018, 382, 1335–1340. [Google Scholar] [CrossRef] [Green Version]
- Pavlis, A.K.; Nikolopoulos, G.M.; Lambropoulos, P. Evaluation of the performance of two state-transfer Hamiltonians in the presence of static disorder. Quantum Inf. Process. 2016, 15, 2553–2568. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, S.; Apollaro, T.J.G.; Sindona, A.; Plastina, F. Quantum-state transfer via resonant tunneling through local-field-induced barriers. Phys. Rev. A 2013, 87, 042313. [Google Scholar] [CrossRef]
- Acosta Coden, D.S.; Gómez, S.S.; Ferrón, A.; Osenda, O. Controlled quantum state transfer in XX spin chains at the Quantum Speed Limit. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2020, 387, 127009. [Google Scholar] [CrossRef]
- Bayat, A.; Omar, Y. Measurement-assisted quantum communication in spin channels with dephasing. New J. Phys. 2015, 17, 103041. [Google Scholar] [CrossRef] [Green Version]
- Kay, A. Perfect coding for dephased quantum state transfer. Phys. Rev. A 2018, 97, 1–8. [Google Scholar] [CrossRef] [Green Version]
k | ||
---|---|---|
1 | 1,11 | |
2 | 1 | 1,2,4,5,7,8,10,11 |
3 | 1,3,5,7,9,11 | |
4 | 1,5,7,11 | |
5 | 1,11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apollaro, T.J.G.; Chetcuti, W.J. Two-Excitation Routing via Linear Quantum Channels. Entropy 2021, 23, 51. https://doi.org/10.3390/e23010051
Apollaro TJG, Chetcuti WJ. Two-Excitation Routing via Linear Quantum Channels. Entropy. 2021; 23(1):51. https://doi.org/10.3390/e23010051
Chicago/Turabian StyleApollaro, Tony John George, and Wayne Jordan Chetcuti. 2021. "Two-Excitation Routing via Linear Quantum Channels" Entropy 23, no. 1: 51. https://doi.org/10.3390/e23010051
APA StyleApollaro, T. J. G., & Chetcuti, W. J. (2021). Two-Excitation Routing via Linear Quantum Channels. Entropy, 23(1), 51. https://doi.org/10.3390/e23010051