PT
-Symmetric Potentials from the Confluent Heun Equation
Abstract
1. Introduction
2. Exactly Solvable Potentials from Special Functions of Mathematical Physics
3. Application to the Confluent Heun Equation
4. Implementing Symmetry to the Potentials
4.1. Parity Considerations
4.2. -Parity Considerations
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bender, C.M.; Boettcher, B. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef]
- Japaridze, G.S. Space of state vectors in PT-symmetric quantum mechanics. J. Phys. A Math. Gen. 2002, 35, 1709–1718. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 2002, 43, 205–214. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 2002, 43, 2814–2816. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. J. Math. Phys. 2002, 43, 3944–3951. [Google Scholar] [CrossRef]
- Ohlsson, T. Non-Hermitian neutrino oscillations in matter with PT symmetric Hamiltonians. Eur. Phys. Lett 2016, 113, 61001. [Google Scholar] [CrossRef]
- Mannheim, P.D. Astrophysical evidence for the non-Hermitian but PT symmetric Hamiltonian of conformal gravity. Fortschr. Phys. 2013, 61, 140–154. [Google Scholar] [CrossRef]
- Rüter, C.E.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of parity-time symmetry in optics. Nat. Phys. 2010, 6, 192–195. [Google Scholar]
- Bender, C.M.; Dorey, P.E.; Dunning, C.; Fring, A.; Hook, D.W.; Jones, H.F.; Kuzhel, S.; Lévai, G.; Tateo, R. PT Symmetry in Quantum and Classical Physics; World Scientific Publishing Europe Ltd.: London, UK, 2019. [Google Scholar]
- Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.H.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 1958, 5, 357–390. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Gendenshtein, L.E. Derivation of exact spectra of the Schrödinger equation by means of supersymmetry. Zh. Eksp. Teor. Fiz. 1983, 38, 299, (Engl. transl. JETP Lett. 1983, 38, 356–359). [Google Scholar]
- Lévai, G.; Znojil, M. Systematic search for PT-symmetric potentials with real energy spectra. J. Phys. A Math. Gen. 2000, 33, 7165–7180. [Google Scholar] [CrossRef]
- Lévai, G.; Znojil, M. Conditions for complex spectra in a class of PT-symmetric potentials. Mod. Phys. Lett. A 2001, 16, 1973–1981. [Google Scholar] [CrossRef]
- Ahmed, Z. Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential. Phys. Lett. A 2001, 282, 343–348. [Google Scholar] [CrossRef]
- Lévai, G.; Cannata, F.; Ventura, A. PT symmetry breaking and explicit expressions for the pseudo-norm in the Scarf II potential. Phys. Lett. A 2002, 300, 271–281. [Google Scholar] [CrossRef][Green Version]
- Lévai, G. On the pseudo-norm and admissible solutions of the PT-symmetric Scarf I potential. J. Phys. A Math. Gen. 2006, 39, 10161–10169. [Google Scholar] [CrossRef]
- Lévai, G. On the normalization constant of PT-symmetric and real Rosen–Morse I potentials. Phys. Lett. A 2008, 372, 6484–6489. [Google Scholar] [CrossRef]
- Lévai, G.; Magyari, E. The PT-symmetric Rosen–Morse II potential: Effects of the asymptotically non-vanishing imaginary potential component. J. Phys. A Math. Theor. 2009, 42, 195302. [Google Scholar] [CrossRef]
- Roychoudhury, R.; Roy, P. Construction of the C operator for a PT symmetric model. J. Phys. A 2007, 40, F617–F620. [Google Scholar] [CrossRef]
- Ahmed, Z. Zero width resonance (spectral singularity) in a complex PT-symmetric potential. J. Phys. A Math. Theor. 2009, 42, 472005. [Google Scholar] [CrossRef][Green Version]
- Bagchi, B.; Mallik, S.; Quesne, C. PT-symmetric square well and the associated SUSY hierarchies. Int. J. Mod. Phys. A 2002, 17, 1651–1664. [Google Scholar] [CrossRef]
- Lévai, G.; Znojil, M. The interplay of supersymmetry and PT symmetry in quantum mechanics: A case study for the Scarf II potential. J. Phys. A Math. Gen. 2002, 35, 8793–8804. [Google Scholar] [CrossRef]
- Lévai, G. Solvable PT-symmetric potentials in higher dimensions. J. Phys. A Math. Gen. 2007, 40, F273–F280. [Google Scholar] [CrossRef]
- Lévai, G. PT-symmetry and its spontaneous breakdown in three dimensions. J. Phys. A Math. Theor. 2008, 41, 244015. [Google Scholar] [CrossRef]
- Lévai, G. Solvable PT-symmetric potentials in 2 and 3 dimensions. J. Phys. Conf. Ser. 2008, 128, 12045. [Google Scholar] [CrossRef]
- Bagchi, B.; Quesne, C. Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework. Phys. Lett. A 2002, 300, 18–26. [Google Scholar] [CrossRef][Green Version]
- Lévai, G.; Cannata, F.; Ventura, A. Algebraic and scattering aspects of a PT-symmetric solvable potential. J. Phys. A Math. Gen. 2001, 34, 839–844. [Google Scholar] [CrossRef]
- Lévai, G.; Cannata, F.; Ventura, A. PT-symmetric potentials and the SO(2, 2) algebra. J. Phys. A Math. Gen. 2002, 35, 5041–5057. [Google Scholar]
- Natanzon, G.A. General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric functions. Teor. Mat. Fiz. 1979, 38, 146–153. [Google Scholar] [CrossRef]
- Dutt, R.; Khare, A.; Varshni, Y.P. New class of conditionally exactly solvable potentials in quantum mechanics. J. Phys. A Math. Gen. 1995, 28, L107–L113. [Google Scholar] [CrossRef]
- Lévai, G.; Sinha, A.; Roy, P. An exactly solvable PT symmetric potential from the Natanzon class. J. Phys. A Math. Gen. 2003, 36, 7611–7623. [Google Scholar] [CrossRef][Green Version]
- Lévai, G. Gradual spontaneous breakdown of PT symmetry in a solvable potential. J. Phys. A Math. Theor. 2012, 45, 444020. [Google Scholar] [CrossRef]
- Lévai, G. PT symmetry in Natanzon-class potentials. Int. J. Theor. Phys. 2015, 54, 2724–2736. [Google Scholar] [CrossRef][Green Version]
- Ronveaux, A. (Ed.) Heun’s Differential Equations; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Ishkhanyan, T.A.; Ishkhanyan, A.M. Solutions of the biconfluent Heun equation in terms of the Hermite functions. Ann. Phys. 2017, 383, 79–91. [Google Scholar] [CrossRef]
- Erdélyi, A. Certain expansions of solutions of the Heun equation. Q. J. Math. 1944, 15, 62–69. [Google Scholar] [CrossRef]
- Schmidt, D. Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach hypergeometrischen Funktionen. J. Reine Angew. Math. 2009, 1979, 127. [Google Scholar]
- El-Jaick, L.J.; Figueiredo, B.D.B. A limit of the confluent Heun equation and the Schrödinger equation for an inverted potential and for an electric dipole. J. Math. Phys. 2009, 50, 123511. [Google Scholar] [CrossRef]
- López-Ortega, A. New conditionally exactly solvable inverse power law potentials. Phys. Scr. 2016, 90, 085202. [Google Scholar] [CrossRef][Green Version]
- Ishkhanyan, A.M. Exact solution of the Schrödinger equation for the inverse square root potential v0/. Eur. Phys. Lett. 2015, 112, 10006. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. A singular Lambert-W Schrödinger potential exactly solvable in terms of the confluent hypergeometric functions. Mod. Phys. Lett. A 2016, 31, 1650177. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. A conditionally exactly solvable generalization of the inverse square root potential. Phys. Lett. A 2016, 380, 3786–3790. [Google Scholar] [CrossRef][Green Version]
- López-Ortega, A. A conditionally exactly solvable generalization of the potential step. arXiv 2015, arXiv:1512.04196. [Google Scholar]
- Ishkhanyan, M. The third exactly solvable hypergeometric quantum-mechanical potential. Eur. Phys. Lett. 2016, 115, 20002. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. Schrödinger potentials solvable in terms of the confluent Heun functions. Theor. Math. Phys. 2016, 188, 980–993. [Google Scholar] [CrossRef]
- Lemieux, A.; Bose, A.K. Construction de potentiels pour lesquels l’equation de Schrödinger est soluble. Ann. Inst. Henri Poincaré 1969, 10, 259–269. [Google Scholar]
- Bhattacharjie, A.; Sudarshan, E.C.G. A class of solvable potentials. Nuovo Cim. 1962, 25, 864–879. [Google Scholar] [CrossRef]
- Cordero, P.; Salamó, S. Algebraic solution for the Natanzon confluent potentials. J. Phys. A Math. Gen. 1991, 24, 5299–5305. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1970. [Google Scholar]
- Lévai, G. A search for shape-invariant solvable potentials. J. Phys. A Math. Gen. 1989, 22, 689–702. [Google Scholar] [CrossRef]
- Lévai, G. A class of exactly solvable potentials related to the Jacobi polynomials. J. Phys. A Math. Gen. 1991, 24, 131–146. [Google Scholar] [CrossRef]
- Ginocchio, J.N. A class of exactly solvable potentials. I. One-dimensional Schrödinger equation. Ann. Phys. (N. Y.) 1984, 152, 203–219. [Google Scholar] [CrossRef]
- Ginocchio, J.N. A class of exactly solvable potentials II. The three-dimensional Schrödinger equation. Ann. Phys. (N. Y.) 1985, 159, 467–480. [Google Scholar] [CrossRef]
- Roychoudhury, R.; Roy, P.; Znojil, M.; Lévai, G. Comprehensive analysis of conditionally exactly solvable models. J. Math. Phys. 2001, 42, 1996–2007. [Google Scholar] [CrossRef]
- Williams, B.W.; Rutherford, J.L.; Lévai, G. “Implicit” potentials associated with Jacobi polynomials: Some novel aspects. Phys. Lett. A 1995, 199, 7–11. [Google Scholar] [CrossRef]
- Williams, B.W.; Lévai, G. An asymmetric “implicit” potential on the real line. Mod. Phys. Lett. A 2003, 18, 1901–1909. [Google Scholar] [CrossRef]
- Znojil, M.; Lévai, G.; Roy, P.; Roychoudhury, R. Anomalous doublets of states in a PT symmetric quantum model. Phys. Lett. A 2001, 290, 249–254. [Google Scholar] [CrossRef][Green Version]
C | E | |||||
---|---|---|---|---|---|---|
PI | ||||||
PII | 1 | |||||
1 | ||||||
1 | ||||||
1 | ||||||
PIII | ||||||
C | z | impl. [53] | ||||
PIV | ||||||
C | impl. | |||||
PV | C | |||||
PI | |
PII | |
PIII | |
PIV | |
PV | |
C | ||||||
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 1 | ||
1 | 0 | 0 | 0 | 0 | ||
1 | 0 | 0 | 1 | 0 | ||
2 | 0 | 0 | 2 | −1 | ||
0 | 1 | 0 | 0 | 0 | ) | |
0 | 1 | 1 | 0 | 0 | ) | |
2 | 2 | 0 | 0 | |||
4 | 4 | 0 | ||||
8 | 8 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lévai, G.
Lévai G.
Lévai, Géza.
2021. "
Lévai, G.
(2021).