PT
-Symmetric Potentials from the Confluent Heun Equation
Abstract
:1. Introduction
2. Exactly Solvable Potentials from Special Functions of Mathematical Physics
3. Application to the Confluent Heun Equation
4. Implementing Symmetry to the Potentials
4.1. Parity Considerations
4.2. -Parity Considerations
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bender, C.M.; Boettcher, B. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef] [Green Version]
- Japaridze, G.S. Space of state vectors in PT-symmetric quantum mechanics. J. Phys. A Math. Gen. 2002, 35, 1709–1718. [Google Scholar] [CrossRef] [Green Version]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 2002, 43, 205–214. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 2002, 43, 2814–2816. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. J. Math. Phys. 2002, 43, 3944–3951. [Google Scholar] [CrossRef]
- Ohlsson, T. Non-Hermitian neutrino oscillations in matter with PT symmetric Hamiltonians. Eur. Phys. Lett 2016, 113, 61001. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D. Astrophysical evidence for the non-Hermitian but PT symmetric Hamiltonian of conformal gravity. Fortschr. Phys. 2013, 61, 140–154. [Google Scholar] [CrossRef] [Green Version]
- Rüter, C.E.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of parity-time symmetry in optics. Nat. Phys. 2010, 6, 192–195. [Google Scholar]
- Bender, C.M.; Dorey, P.E.; Dunning, C.; Fring, A.; Hook, D.W.; Jones, H.F.; Kuzhel, S.; Lévai, G.; Tateo, R. PT Symmetry in Quantum and Classical Physics; World Scientific Publishing Europe Ltd.: London, UK, 2019. [Google Scholar]
- Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.H.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 1958, 5, 357–390. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Gendenshtein, L.E. Derivation of exact spectra of the Schrödinger equation by means of supersymmetry. Zh. Eksp. Teor. Fiz. 1983, 38, 299, (Engl. transl. JETP Lett. 1983, 38, 356–359). [Google Scholar]
- Lévai, G.; Znojil, M. Systematic search for PT-symmetric potentials with real energy spectra. J. Phys. A Math. Gen. 2000, 33, 7165–7180. [Google Scholar] [CrossRef]
- Lévai, G.; Znojil, M. Conditions for complex spectra in a class of PT-symmetric potentials. Mod. Phys. Lett. A 2001, 16, 1973–1981. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z. Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential. Phys. Lett. A 2001, 282, 343–348. [Google Scholar] [CrossRef]
- Lévai, G.; Cannata, F.; Ventura, A. PT symmetry breaking and explicit expressions for the pseudo-norm in the Scarf II potential. Phys. Lett. A 2002, 300, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Lévai, G. On the pseudo-norm and admissible solutions of the PT-symmetric Scarf I potential. J. Phys. A Math. Gen. 2006, 39, 10161–10169. [Google Scholar] [CrossRef]
- Lévai, G. On the normalization constant of PT-symmetric and real Rosen–Morse I potentials. Phys. Lett. A 2008, 372, 6484–6489. [Google Scholar] [CrossRef]
- Lévai, G.; Magyari, E. The PT-symmetric Rosen–Morse II potential: Effects of the asymptotically non-vanishing imaginary potential component. J. Phys. A Math. Theor. 2009, 42, 195302. [Google Scholar] [CrossRef]
- Roychoudhury, R.; Roy, P. Construction of the C operator for a PT symmetric model. J. Phys. A 2007, 40, F617–F620. [Google Scholar] [CrossRef]
- Ahmed, Z. Zero width resonance (spectral singularity) in a complex PT-symmetric potential. J. Phys. A Math. Theor. 2009, 42, 472005. [Google Scholar] [CrossRef]
- Bagchi, B.; Mallik, S.; Quesne, C. PT-symmetric square well and the associated SUSY hierarchies. Int. J. Mod. Phys. A 2002, 17, 1651–1664. [Google Scholar] [CrossRef] [Green Version]
- Lévai, G.; Znojil, M. The interplay of supersymmetry and PT symmetry in quantum mechanics: A case study for the Scarf II potential. J. Phys. A Math. Gen. 2002, 35, 8793–8804. [Google Scholar] [CrossRef] [Green Version]
- Lévai, G. Solvable PT-symmetric potentials in higher dimensions. J. Phys. A Math. Gen. 2007, 40, F273–F280. [Google Scholar] [CrossRef]
- Lévai, G. PT-symmetry and its spontaneous breakdown in three dimensions. J. Phys. A Math. Theor. 2008, 41, 244015. [Google Scholar] [CrossRef]
- Lévai, G. Solvable PT-symmetric potentials in 2 and 3 dimensions. J. Phys. Conf. Ser. 2008, 128, 12045. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, B.; Quesne, C. Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework. Phys. Lett. A 2002, 300, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Lévai, G.; Cannata, F.; Ventura, A. Algebraic and scattering aspects of a PT-symmetric solvable potential. J. Phys. A Math. Gen. 2001, 34, 839–844. [Google Scholar] [CrossRef]
- Lévai, G.; Cannata, F.; Ventura, A. PT-symmetric potentials and the SO(2, 2) algebra. J. Phys. A Math. Gen. 2002, 35, 5041–5057. [Google Scholar]
- Natanzon, G.A. General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric functions. Teor. Mat. Fiz. 1979, 38, 146–153. [Google Scholar] [CrossRef]
- Dutt, R.; Khare, A.; Varshni, Y.P. New class of conditionally exactly solvable potentials in quantum mechanics. J. Phys. A Math. Gen. 1995, 28, L107–L113. [Google Scholar] [CrossRef]
- Lévai, G.; Sinha, A.; Roy, P. An exactly solvable PT symmetric potential from the Natanzon class. J. Phys. A Math. Gen. 2003, 36, 7611–7623. [Google Scholar] [CrossRef] [Green Version]
- Lévai, G. Gradual spontaneous breakdown of PT symmetry in a solvable potential. J. Phys. A Math. Theor. 2012, 45, 444020. [Google Scholar] [CrossRef]
- Lévai, G. PT symmetry in Natanzon-class potentials. Int. J. Theor. Phys. 2015, 54, 2724–2736. [Google Scholar] [CrossRef] [Green Version]
- Ronveaux, A. (Ed.) Heun’s Differential Equations; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Ishkhanyan, T.A.; Ishkhanyan, A.M. Solutions of the biconfluent Heun equation in terms of the Hermite functions. Ann. Phys. 2017, 383, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Erdélyi, A. Certain expansions of solutions of the Heun equation. Q. J. Math. 1944, 15, 62–69. [Google Scholar] [CrossRef]
- Schmidt, D. Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach hypergeometrischen Funktionen. J. Reine Angew. Math. 2009, 1979, 127. [Google Scholar]
- El-Jaick, L.J.; Figueiredo, B.D.B. A limit of the confluent Heun equation and the Schrödinger equation for an inverted potential and for an electric dipole. J. Math. Phys. 2009, 50, 123511. [Google Scholar] [CrossRef] [Green Version]
- López-Ortega, A. New conditionally exactly solvable inverse power law potentials. Phys. Scr. 2016, 90, 085202. [Google Scholar] [CrossRef] [Green Version]
- Ishkhanyan, A.M. Exact solution of the Schrödinger equation for the inverse square root potential v0/. Eur. Phys. Lett. 2015, 112, 10006. [Google Scholar] [CrossRef] [Green Version]
- Ishkhanyan, A.M. A singular Lambert-W Schrödinger potential exactly solvable in terms of the confluent hypergeometric functions. Mod. Phys. Lett. A 2016, 31, 1650177. [Google Scholar] [CrossRef] [Green Version]
- Ishkhanyan, A.M. A conditionally exactly solvable generalization of the inverse square root potential. Phys. Lett. A 2016, 380, 3786–3790. [Google Scholar] [CrossRef] [Green Version]
- López-Ortega, A. A conditionally exactly solvable generalization of the potential step. arXiv 2015, arXiv:1512.04196. [Google Scholar]
- Ishkhanyan, M. The third exactly solvable hypergeometric quantum-mechanical potential. Eur. Phys. Lett. 2016, 115, 20002. [Google Scholar] [CrossRef] [Green Version]
- Ishkhanyan, A.M. Schrödinger potentials solvable in terms of the confluent Heun functions. Theor. Math. Phys. 2016, 188, 980–993. [Google Scholar] [CrossRef]
- Lemieux, A.; Bose, A.K. Construction de potentiels pour lesquels l’equation de Schrödinger est soluble. Ann. Inst. Henri Poincaré 1969, 10, 259–269. [Google Scholar]
- Bhattacharjie, A.; Sudarshan, E.C.G. A class of solvable potentials. Nuovo Cim. 1962, 25, 864–879. [Google Scholar] [CrossRef]
- Cordero, P.; Salamó, S. Algebraic solution for the Natanzon confluent potentials. J. Phys. A Math. Gen. 1991, 24, 5299–5305. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1970. [Google Scholar]
- Lévai, G. A search for shape-invariant solvable potentials. J. Phys. A Math. Gen. 1989, 22, 689–702. [Google Scholar] [CrossRef]
- Lévai, G. A class of exactly solvable potentials related to the Jacobi polynomials. J. Phys. A Math. Gen. 1991, 24, 131–146. [Google Scholar] [CrossRef]
- Ginocchio, J.N. A class of exactly solvable potentials. I. One-dimensional Schrödinger equation. Ann. Phys. (N. Y.) 1984, 152, 203–219. [Google Scholar] [CrossRef]
- Ginocchio, J.N. A class of exactly solvable potentials II. The three-dimensional Schrödinger equation. Ann. Phys. (N. Y.) 1985, 159, 467–480. [Google Scholar] [CrossRef]
- Roychoudhury, R.; Roy, P.; Znojil, M.; Lévai, G. Comprehensive analysis of conditionally exactly solvable models. J. Math. Phys. 2001, 42, 1996–2007. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.W.; Rutherford, J.L.; Lévai, G. “Implicit” potentials associated with Jacobi polynomials: Some novel aspects. Phys. Lett. A 1995, 199, 7–11. [Google Scholar] [CrossRef]
- Williams, B.W.; Lévai, G. An asymmetric “implicit” potential on the real line. Mod. Phys. Lett. A 2003, 18, 1901–1909. [Google Scholar] [CrossRef]
- Znojil, M.; Lévai, G.; Roy, P.; Roychoudhury, R. Anomalous doublets of states in a PT symmetric quantum model. Phys. Lett. A 2001, 290, 249–254. [Google Scholar] [CrossRef] [Green Version]
C | E | |||||
---|---|---|---|---|---|---|
PI | ||||||
PII | 1 | |||||
1 | ||||||
1 | ||||||
1 | ||||||
PIII | ||||||
C | z | impl. [53] | ||||
PIV | ||||||
C | impl. | |||||
PV | C | |||||
PI | |
PII | |
PIII | |
PIV | |
PV | |
C | ||||||
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 1 | ||
1 | 0 | 0 | 0 | 0 | ||
1 | 0 | 0 | 1 | 0 | ||
2 | 0 | 0 | 2 | −1 | ||
0 | 1 | 0 | 0 | 0 | ) | |
0 | 1 | 1 | 0 | 0 | ) | |
2 | 2 | 0 | 0 | |||
4 | 4 | 0 | ||||
8 | 8 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lévai, G.
Lévai G.
Lévai, Géza.
2021. "
Lévai, G.
(2021).