Machine Learning-Assisted Measurement Device-Independent Quantum Key Distribution on Reference Frame Calibration
Abstract
:1. Introduction
2. Methods
3. Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shor, P.W.; Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 2000, 85, 441. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Brassard, G.; Lütkenhaus, N.; Mor, T.; Sanders, B.C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 2000, 85, 1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 2010, 4, 686–689. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Fung, C.H.; Lo, H.K.; Ma, X. Time-shift attack in practical quantum cryptosystems. Quant. Inf. Comput. 2007, 7, 73–82. [Google Scholar]
- Lo, H.K.; Ma, X.F.; Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.-K.; Curty, M.; Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.B. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 2013, 87, 012320. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, X.B. Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 2013, 88, 052332. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, X.B. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 2014, 4, 4612. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.W.; Zhou, Y.H.; Wang, X.B. Reexamination of decoy-state quantum key distribution with biased bases. Phys. Rev. A 2016, 93, 032307. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.L.; Yin, H.L.; Chen, S.J.; Liu, Y.; Zhang, W.J.; Jiang, X.; Zhang, L.; Wang, J.; You, L.X.; Guan, J.Y.; et al. Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 2014, 112, 19050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.H.; Yu, Z.W.; Wang, X.B. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 2016, 93, 042324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.H.; Zhang, C.M.; Guo, G.C.; Wang, Q. Biased three-intensity decoy-state scheme on the measurement-device-independent quantum key distribution using heralded single-photon sources. Opt. Express 2018, 26, 4219. [Google Scholar] [CrossRef]
- Chen, W.; Han, Z.F.; Mo, X.F.; Xu, F.X.; Wei, G.; Guo, G.C. Active phase compensation of quantum key distribution system. Chin. Sci. Bull. 2008, 53, 1310–1314. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.L.; Yin, H.L.; Zhao, Q.; Liu, H.; Sun, X.X.; Huang, M.Q.; Zhang, W.J.; Chen, S.J.; Zhang, L.; You, L.X.; et al. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 2016, 6, 011024. [Google Scholar]
- August, M.; Ni, X.T. Using recurrent neural networks to optimize dynamical decoupling for quantum memory. Phys. Rev. A 2017, 95, 012335. [Google Scholar] [CrossRef] [Green Version]
- Ostaszewski, M.; Miszczak, J.A.; Sadowski, P. Geometrical versus time-series representation of data in quantum control learning. J. Phys. A Math. Theor. 2020, 53, 195301. [Google Scholar] [CrossRef]
- Bukov, M.; Day, A.G.; Sels, D.; Weinberg, P.; Polkovnikov, A.; Mehta, P. Reinforcement learning in different phases of quantum control. Phys. Rev. X 2018, 8, 031086. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. J. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Jurgen, S. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar]
- Liu, J.Y.; Ding, H.J.; Zhang, C.M.; Xie, S.P.; Wang, Q. Practical phase-modulation stabilization in quantum key distribution via machine learning. Phys. Rev. Appl. 2019, 12, 014059. [Google Scholar] [CrossRef] [Green Version]
- Connor, J.T.; Martin, R.D.; Atlas, L.E. Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 1994, 5, 240–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Xu, H.; Lo, H.K. Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 2014, 89, 052333. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.W.; Zhou, Y.H.; Wang, X.B. Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A 2015, 91, 032318. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.Y.; Ding, H.J.; Sun, M.S.; Zhang, S.H.; Liu, J.Y.; Zhang, C.H.; Li, J.; Wang, Q. Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution Over 200 km of Optical Fiber. Phys. Rev. Appl. 2021, 15, 064016. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Ding, H.J.; Zhang, C.H.; Li, J.; Zhang, C.M.; Wang, Q. Experimental three-state measurement-device-independent quantum key distribution with uncharacterized sources. Opt. Lett. 2020, 45, 4176–4179. [Google Scholar] [CrossRef]
- Mo, X.F.; Zhu, B.; Han, Z.F.; Gui, Y.Z.; Guo, G.C. Faraday–Michelson system for quantum cryptography. Opt. Lett. 2005, 30, 2632–2634. [Google Scholar] [CrossRef]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef]
- Wang, X.B.; Yu, Z.W.; Hu, X.L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 2018, 98, 062323. [Google Scholar] [CrossRef] [Green Version]
Parameters | v | |||||
---|---|---|---|---|---|---|
100 km | 0.6353 | 0.0476 | 0.3171 | 0.885 | 0.110 | 0.002 |
250 km | 0.4492 | 0.0691 | 0.4817 | 0.495 | 0.436 | 0.027 |
Distance | ||||||
---|---|---|---|---|---|---|
100 km | 0.0015 | 0.1539 | 0.002 | 0.257 | ||
250 km | 0.3118 | 0.00236 | 0.267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, J.; Zeng, G.; Zhang, C.; Zhou, X.; Wang, Q. Machine Learning-Assisted Measurement Device-Independent Quantum Key Distribution on Reference Frame Calibration. Entropy 2021, 23, 1242. https://doi.org/10.3390/e23101242
Zhang S, Liu J, Zeng G, Zhang C, Zhou X, Wang Q. Machine Learning-Assisted Measurement Device-Independent Quantum Key Distribution on Reference Frame Calibration. Entropy. 2021; 23(10):1242. https://doi.org/10.3390/e23101242
Chicago/Turabian StyleZhang, Sihao, Jingyang Liu, Guigen Zeng, Chunhui Zhang, Xingyu Zhou, and Qin Wang. 2021. "Machine Learning-Assisted Measurement Device-Independent Quantum Key Distribution on Reference Frame Calibration" Entropy 23, no. 10: 1242. https://doi.org/10.3390/e23101242
APA StyleZhang, S., Liu, J., Zeng, G., Zhang, C., Zhou, X., & Wang, Q. (2021). Machine Learning-Assisted Measurement Device-Independent Quantum Key Distribution on Reference Frame Calibration. Entropy, 23(10), 1242. https://doi.org/10.3390/e23101242