Inhomogeneous and Radiating Composite Fluids
Abstract
:1. Introduction
2. Energy Conditions
- (i)
- The null energy condition: For any future pointing null vector , the total energy density . By continuity, for an orthonormal vector , we then have that at each event on the spacetime.
- (ii)
- The weak energy condition: For any future pointing timelike vector , the total energy density , at each event in the spacetime. The weak energy condition contains the null energy condition.
- (iii)
- The strong energy condition: For any future pointing timelike unit vector , the stresses of the matter at each event in the spacetime are restricted by the condition , where T is the trace of the energy momentum tensor T.
- (iv)
- The dominant energy condition: For any future pointing timelike or null vector , the energy density must obey (the weak energy condition), and the four-momentum density vector must be future pointing and timelike, or null at every event in the spacetime (the flux energy condition (The flux energy condition is a weaker form of the dominant energy condition, since no assumption for positive energy densities need be enforced.)) According to any observer, this is to say that the mass-energy flow is always positive and less than the speed of light.
3. Viscous Fluid Distributions
3.1. Field Equations
3.2. Eigenvalues
- Null energy conditions:
- Weak energy conditions:
- Dominant energy conditions:
- Strong energy conditions:
3.3. Energy Conditions
3.3.1. Null Energy Conditions (NEC)
3.3.2. Weak Energy Conditions (WEC)
3.3.3. Dominant Energy Conditions (DEC)
3.3.4. Strong Energy Conditions (SEC)
3.3.5. Summary of the Energy Conditions
- Null energy conditions:
- Weak energy conditions:
- Dominant energy conditions:
- Strong energy conditions:
4. Composite Fluid Distributions
4.1. Field Equations
4.2. Eigenvalues
4.3. Energy Conditions
4.3.1. Null Energy Conditions (NEC)
4.3.2. Weak Energy Conditions (WEC)
4.3.3. Dominant Energy Conditions (DEC)
4.3.4. Strong Energy Conditions (SEC)
4.3.5. Summary of the Energy Conditions
- NEC:
5. Energy Conditions of a Two-Component Fluid of Null Dust and a Null String
- The null energy condition:
- The weak energy condition:
- The strong energy condition:
- The dominant energy conditions:
- The null energy condition:
- The weak energy conditions:
- The strong energy conditions:
- The dominant energy conditions:
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Orthonormal Basis: Type I Fluid
Appendix B. Orthonormal Basis: Type II Fluid
References
- Herrera, L. New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case. Phys. Rev. D 2018, 97, 044010. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self-gravitating fluid distributions. Phys. Rev. D 2018, 98, 104059. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Complexity factors for axially symmetric static sources. Phys. Rev. D 2019, 99, 044049. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Quasi-homologous evolution of self-gravitating systems with vanishing complexity factor. Eur. Phys. J. C 2020, 80, 631. [Google Scholar] [CrossRef]
- Sharif, M.; Butt, I.I. Complexity factor for charged spherical system. Eur. Phys. J. C 2018, 78, 688. [Google Scholar] [CrossRef]
- Sharif, M.; Butt, I.I. Complexity factor for static cylindrical system. Eur. Phys. J. C 2018, 78, 850. [Google Scholar] [CrossRef]
- Sharif, M.; Butt, I.I. Electromagnetic effects on complexity factor for static cylindrical system. Chin. J. Phys. 2019, 61, 238. [Google Scholar] [CrossRef]
- Casadio, R.; Contreras, E.; Ovalle, J.; Sotomayor, A.; Stucklik, Z. Isotropization and change of complexity by gravitational decoupling. Eur. Phys. J. C 2019, 79, 826. [Google Scholar] [CrossRef]
- Sharif, M.; Tariq, S. Complexity factor for charged dissipative dynamical system. Mod. Phys. Lett. A 2020, 35, 2050231. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric static fluids: A general study. Phys. Rev. D 2021, 103, 024037. [Google Scholar] [CrossRef]
- Abbas, G.; Nazar, H. Complexity factor for anisotropic source in non-minimal coupling metric f (R) gravity. Eur. Phys. J. C 2018, 78, 510. [Google Scholar] [CrossRef]
- Sharif, M.; Majid, A.; Nasir, M. Complexity factor for self-gravitating system in modified Gauss–Bonnet gravity. Int. J. Mod. Phys. A 2019, 34, 19502010. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Spacetime; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Santos, J.; Alcaniz, J.S.; Rebouças, M.J. Energy conditions and supernovae observations. Phys. Rev. D 2006, 74, 067301. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Alcaniz, J.S.; Pires, N.; Rebouças, M.J. Energy conditions in f (R) gravity. Phys. Rev. D 2007, 75, 083523. [Google Scholar]
- Capozziello, S.; Nojiri, S.; Odintsov, S.D. The role of energy conditions in f (R) cosmology. Phys. Lett. B 2018, 781, 99. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Mandal, S.; Arora, S. Energy conditions in non-minimally coupled f (R, T) gravity. Astron. Nachr. 2021, 342, 89. [Google Scholar] [CrossRef]
- Arora, S.; Santos, J.R.L.; Sahoo, P.K. Constraining f (Q, T) gravity from energy conditions. Phys. Dark Universe 2021, 31, 100790. [Google Scholar] [CrossRef]
- Rajabi, F.; Nozari, K. Energy condition in unimodular f (R, T) gravity. Eur. Phys. J. C 2021, 81, 247. [Google Scholar] [CrossRef]
- Kontou, E.-A.; Sanders, K. Energy conditions in general relativity and quantum field theory. Class. Quantum Grav. 2020, 37, 193001. [Google Scholar] [CrossRef]
- Maurya, S.K.; Gupta, Y.K.; Ray, S.; Deb, D. A new model for spherically symmetric charged compact stars of embedding class 1. Eur. Phys. J. C 2017, 77, 45. [Google Scholar] [CrossRef] [Green Version]
- Maurya, S.K.; Banerjee, A.; Hansraj, S. Role of pressure anisotropy on relativistic compact stars. Phys. Rev. D 2018, 97, 044022. [Google Scholar] [CrossRef] [Green Version]
- Jasim, M.K.; Deb, D.; Ray, S.; Gupta, Y.K.; Chowdhury, S.R. Anisotropic strange stars in Tolman-Kuchowicz spacetime. Eur. Phys. J. C 2018, 78, 603. [Google Scholar] [CrossRef] [Green Version]
- Shamir, M.F. Massive compact Bardeen stars with conformal motion. Phys. Lett. B 2020, 811, 135927. [Google Scholar] [CrossRef]
- Hansraj, S. Generalized spheroidal spacetimes in 5-D Einstein–Maxwell–Gauss–Bonnet gravity. Eur. Phys. J. C 2017, 77, 557. [Google Scholar] [CrossRef] [Green Version]
- Bhar, P.; Govender, M.; Sharma, R. A comparative study between EGB gravity and GTR by modeling compact stars. Eur. Phys. J. C 2017, 77, 109. [Google Scholar] [CrossRef] [Green Version]
- Abbas, G.; Tahir, M. Gravitational perfect fluid collapse in Gauss–Bonnet gravity. Eur. Phys. J. C 2017, 77, 537. [Google Scholar] [CrossRef]
- Sharif, M.; Iftikhar, S. Strong gravitational lensing in non-commutative wormholes. Astrophys. Space Sci. 2015, 357, 79. [Google Scholar] [CrossRef]
- Pretel, J.M.Z.; Silva, M.F.A. Causal thermodynamics of a gravitational collapse model for an anisotropic fluid with dissipative flows. Gen. Relativ. Gravit. 2019, 51, 3. [Google Scholar] [CrossRef] [Green Version]
- Charan, K.; Yadav, O.P.; Tewari, B.C. Charged anisotropic spherical collapse with heat flow. Eur. Phys. J. C 2021, 81, 60. [Google Scholar] [CrossRef]
- Kolassis, C.A.; Santos, N.O.; Tsoubelis, D. Energy conditions for an imperfect fluid. Class. Quantum Grav. 1988, 5, 1329. [Google Scholar] [CrossRef]
- Chan, R. Collapse of a radiating star with shear. Mon. Not. R. Astron. Soc. 1997, 288, 589. [Google Scholar] [CrossRef]
- Chan, R. Radiating gravitational collapse with shear viscosity. Mon. Not. R. Astron. Soc. 2000, 316, 588. [Google Scholar] [CrossRef]
- Chan, R. Radiating gravitational collapse with shearing motion and bulk viscosity. Astron. Astrophys. 2001, 368, 325. [Google Scholar] [CrossRef]
- Chan, R. Radiating gravitational collapse with shear revisited. Int. J. Mod. Phys. D 2003, 12, 1131. [Google Scholar] [CrossRef]
- Brandt, C.F.C.; da Silva, M.F.A.; da Rocha, J.F.V.; Chan, R. Gravitational Collapse of spherically symmetric anisotropic fluid with homothetic self-similarity. Int. J. Mod. Phys. D 2003, 12, 1315. [Google Scholar] [CrossRef]
- Pinheiro, G.; Chan, R. Radiating gravitational collapse with shear viscosity revisited. Gen. Relativ. Gravit. 2008, 40, 2149. [Google Scholar] [CrossRef]
- Pinheiro, G.; Chan, R. Radiating gravitational collapse with shearing motion and bulk viscosity revisited. Int. J. Mod. Phys. D 2010, 19, 1797. [Google Scholar] [CrossRef] [Green Version]
- Maharaj, S.D.; Govender, G.; Govender, M. Radiating stars with generalised Vaidya atmospheres. Gen. Relativ. Gravit. 2012, 44, 1089. [Google Scholar] [CrossRef] [Green Version]
- Maharaj, S.D.; Brassel, B.P. Radiating stars with composite matter distributions. Eur. Phys. J. C 2021, 81, 366. [Google Scholar]
- Maharaj, S.D.; Brassel, B.P. Radiating composite stars with electromagnetic fields. Eur. Phys. J. C 2021, 81, 783. [Google Scholar]
- Wang, A.; Wu, Y. Generalized Vaidya solutions. Gen. Relativ. Gravit. 1999, 31, 107. [Google Scholar] [CrossRef] [Green Version]
- Brassel, B.P.; Maharaj, S.D.; Goswami, R. Diffusive and dynamical radiating stars with realistic equations of state. Gen. Relativ. Gravit. 2017, 49, 37. [Google Scholar] [CrossRef]
- Brassel, B.P.; Goswami, R.; Maharaj, S.D. Collapsing radiating stars with various equations of state. Phys. Rev. D 2017, 95, 124051. [Google Scholar] [CrossRef]
- Dawood, A.K.; Ghosh, S.G. Generating dynamical black hole solutions. Phys. Rev. D 2004, 70, 104010. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.G.; Dawood, A.K. Radiating black hole solutions in arbitrary dimensions. Gen. Relativ. Gravit. 2008, 40, 9. [Google Scholar] [CrossRef]
- Maeda, H.; Martínez, C. Energy conditions in arbitrary dimensions. Prog. Theor. Exp. Phys. 2020, 2020, 043E02. [Google Scholar] [CrossRef]
- Santos, J.; Rebouças, M.J.; Teixeira, A.F.F. Segre types of symmetric two-tensors in n-dimensional spacetimes. Gen. Relat. Gravit. 1995, 27, 989. [Google Scholar] [CrossRef] [Green Version]
- Wald, R. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Segre, C. Sulla teoria e sulla classificazione delle omografie in uno spazio lineare ad un numero qualcunque di dimensioni. Memor. Reale Accad. Lincei III 1884, XIX, 127. [Google Scholar]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Energy conditions in modified gravity. Phys. Lett. B 2014, 730, 280. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Generalized energy conditions in extended theories of gravity. Phys. Rev. D 2015, 91, 124019. [Google Scholar] [CrossRef] [Green Version]
- Pavsic, M. On negative energies, strings, branes, and braneworlds: A review of novel approaches. Int. J. Mod. Phys. A 2020, 35, 2030020. [Google Scholar] [CrossRef]
- Barcelo, C.; Visser, M. Twilight for the Energy Conditions? Int. J. Mod. Phys. D 2002, 11, 1553. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Fuenmayor, E.; Troconis, O. Dynamics of viscous dissipative gravitational collapse: A full causal approach. Int. J. Mod. Phys. D 2009, 18, 129. [Google Scholar] [CrossRef]
- Kiselev, V.V. Quintessence and black holes. Class. Quantum Grav. 2003, 20, 1187. [Google Scholar] [CrossRef]
- Heydarzade, Y.; Darabi, F. Surrounded Vaidya solution by cosmological fields. Eur. Phys. J. C 2018, 78, 582. [Google Scholar] [CrossRef]
- Brassel, B.P.; Maharaj, S.D. Generalised radiating fields in Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C 2020, 80, 971. [Google Scholar] [CrossRef]
- Di Prisco, A.; Herrera, L.; Le Denmat, G.; MacCallum, M.A.H.; Santos, N.O. Nonadiabatic charged spherical gravitational collapse. Phys. Rev. D 2007, 76, 064017. [Google Scholar] [CrossRef] [Green Version]
- Glass, E.N.; Krisch, J.P. Two-fluid atmosphere for relativistic stars. Class. Quantum Grav. 1999, 16, 1175. [Google Scholar] [CrossRef]
- Krisch, J.P.; Glass, E.N. Energy transport in the Vaidya system. J. Math. Phys. 2005, 46, 062501. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brassel, B.P.; Maharaj, S.D.; Goswami, R. Inhomogeneous and Radiating Composite Fluids. Entropy 2021, 23, 1400. https://doi.org/10.3390/e23111400
Brassel BP, Maharaj SD, Goswami R. Inhomogeneous and Radiating Composite Fluids. Entropy. 2021; 23(11):1400. https://doi.org/10.3390/e23111400
Chicago/Turabian StyleBrassel, Byron P., Sunil D. Maharaj, and Rituparno Goswami. 2021. "Inhomogeneous and Radiating Composite Fluids" Entropy 23, no. 11: 1400. https://doi.org/10.3390/e23111400
APA StyleBrassel, B. P., Maharaj, S. D., & Goswami, R. (2021). Inhomogeneous and Radiating Composite Fluids. Entropy, 23(11), 1400. https://doi.org/10.3390/e23111400