Entropic Uncertainty for Two Coupled Dipole Spins Using Quantum Memory under the Dzyaloshinskii–Moriya Interaction
Abstract
:1. Introduction
2. Dipole–Dipole Two-Spin System
3. Quantum Preliminaries of Relations
3.1. Entropic Uncertainty
3.2. Tightness
3.3. Quantum Information Resources
- EntanglementHere, the entanglement between the two dipole coupled spins is investigated using the concurrence [59], which is presented by:for the extreme entangled states and , for the separable cases.
- Two-spin quantum coherenceBased on the two-spin density matrix of Equation (6), the two-spin quantum coherence (mixedness) is investigated using the linear entropy [60], which can be given as:
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heisenberg, W. The Actual Content of Quantum Theoretical Kinematics and Mechanics. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Kennard, E.H. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 1927, 44, 326–352. [Google Scholar] [CrossRef]
- Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 1983, 50, 631. [Google Scholar] [CrossRef]
- Birula, I.B. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 2006, 74, 052101. [Google Scholar] [CrossRef] [Green Version]
- Coles, P.J.; Piani, M. Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A 2014, 89, 022112. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, H.F.; Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 2003, 68, 032103. [Google Scholar] [CrossRef] [Green Version]
- Howell, J.C.; Bennink, R.S.; Bentley, S.J.; Boyd, R.W. Realization of the Einstein-Podolsky-Rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 2004, 92, 210403. [Google Scholar] [CrossRef] [Green Version]
- Bowen, W.P.; Schnabel, R.; Lam, P.K.; Ralph, T.C. Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 2003, 90, 043601. [Google Scholar]
- Mańko, O.V.; Mańko, V.I. Probability Representation of Quantum States. Entropy 2021, 23, 549. [Google Scholar] [CrossRef]
- Renes, J.M.; Boileau, J.-C. Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 2009, 103, 020402. [Google Scholar] [CrossRef] [Green Version]
- Tomamichel, M.; Renner, R. Uncertainty relation for smooth entropies. Phys. Rev. Lett. 2011, 106, 110506. [Google Scholar] [CrossRef] [PubMed]
- Li, C.F.; Xu, J.S.; Xu, X.Y.; Li, K.; Guo, G.C. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 2011, 7, 752–756. [Google Scholar] [CrossRef]
- Prevedel, R.; Hamel, D.R.; Colbeck, R.; Fisher, K.; Resch, K.J. Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 2011, 7, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef] [Green Version]
- Berta, M.; Christandl, M.; Colbeck, R.; Renes, J.M.; Renner, R. The uncertainty principle in the presence of quantum memory. Nat. Phys. 2010, 6, 659–662. [Google Scholar] [CrossRef]
- Huang, A.-J.; Wang, D.; Wang, J.-M.; Shi, J.-D.; Sun, W.-Y.; Ye, L. Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf. Process. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Hu, M.L.; Fan, H. Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A 2012, 86, 032338. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.-M.; Fang, M.-F.; Yang, B.-Y.; Guo, Y.-N.; He, W.; Zhang, S.-Y. The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments. Phys. Scr. 2014, 89, 115101. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, F.; Fawzi, O.; Wehner, S. Entanglement sampling and applications. IEEE Trans. Inf. Theory 2014, 61, 1093–1112. [Google Scholar] [CrossRef] [Green Version]
- König, R.; Wehner, S.; Wullschleger, J. Unconditional security from noisy quantum storage. IEEE Trans. Inf. Theory 2012, 58, 1962. [Google Scholar] [CrossRef]
- Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 2002, 88, 127902. [Google Scholar] [CrossRef] [Green Version]
- Grosshans, F.; Cerf, N.J. Continuous-variable quantum cryptography is secure against non-Gaussian attacks. Phys. Rev. Lett. 2004, 92, 047905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondal, D.; Pati, A.K. Quantum speed limit for mixed states using an experimentally realizable metric. Phys. Lett. A 2016, 380, 1395–1400. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.P.; Cianciaruso, M.; Céleri, L.C.; Adesso, G.; Soares-Pinto, D.O. Generalized geometric quantum speed limits. Phys. Rev. X 2016, 6, 021031. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.W.; Wiseman, H.M. Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information. New J. Phys. 2012, 14, 033040. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Yang, W.L.; Feng, M. Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 2012, 86, 012113. [Google Scholar] [CrossRef] [Green Version]
- Huang, A.-J.; Shi, J.-D.; Wang, D.; Ye, L. Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 2017, 16, 46. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, Y.-R.; Liu, S.; Chang, Y.-C.; Yue, J.-D.; Fan, H.; Pan, X.-Y. Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond. Sci. Rep. 2017, 7, 2563. [Google Scholar] [CrossRef] [Green Version]
- Mal, S.; Pramanik, T.; Majumdar, A.S. Detecting mixedness of qutrit systems using the uncertainty relation. Phys. Rev. A 2013, 87, 012105. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-Q.; Bai, L.; Liang, J.-Q. Entropic uncertainty relation under multiple bosonic reservoirs with filtering operator. Quantum Inf. Process. 2018, 17, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Zhang, G.-F. The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski-Moriya interaction. Quantum Inf. Process. 2017, 16, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Han, Y. Tightness Entropic Uncertainty Relation in Quantum Markovian-Davies Environment. Int. J. Theor. Phys. 2018, 57, 2523–2535. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Sun, W.-Y.; Shi, W.-N.; Ming, F.; Wang, D.; Ye1, L. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii-Moriya interactions. Front. Phys. 2019, 14, 31601. [Google Scholar] [CrossRef]
- Abdelghany, R.A.; Mohamed, A.-B.A.; Tammam, M.; Obada, A.-S.F. Dynamical characteristic of entropic uncertainty relation in the long-range Ising model with an arbitrary magnetic field. Quantum Inf. Process. 2020, 19, 392. [Google Scholar] [CrossRef]
- Fang, B.-L.; Shi, J.; Wu, T. Quantum-memory-assisted entropic uncertainty relation and quantum coherence in structured reservoir. Int. J. Theor. Phys. 2020, 59, 763–771. [Google Scholar] [CrossRef]
- Haseli, S.; Ahmadi, F. Protecting the entropic uncertainty lower bound in Markovian and non-Markovian environment via additional qubits. Eur. Phys. J. D 2020, 74, 1–6. [Google Scholar] [CrossRef]
- Wilde, M.M. Quantum Information Theory; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Awschalom, D.D.; Hanson, R.; Wrachtrup, J.; Zhou, B.B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 2018, 12, 516. [Google Scholar] [CrossRef]
- Abdel-Aty, A.H.; Khedr, A.N.; Saddeek, Y.B.; Youssef, A.A. Thermal entanglement in quantum annealing processor. Int. J. Quantum Inf. 2018, 16, 1850006. [Google Scholar] [CrossRef]
- Abdel-Aty, A.H.; Khedr, A.N.; Youssef, A.A.; Saddeek, Y.B. Entanglement of thermal state of quantum annealing processor. Ther. Sci. 2020, 24, 325. [Google Scholar] [CrossRef]
- Furman, G.B.; Meerovich, V.M.; Sokolovsky, V.L. Entanglement of dipolar coupling spins. Quantum Inf. Process. 2011, 10, 307–315. [Google Scholar] [CrossRef]
- Furman, G.B.; Meerovich, V.M.; Sokolovsky, V.L. Entanglement in dipolar coupling spin system in equilibrium state. Quantum Inf. Process. 2012, 11, 1603–1617. [Google Scholar] [CrossRef]
- Yun, S.J.; Kim, J.; Nam, C.H. Ising interaction between two qubits composed of the highest magnetic quantum number states through magnetic dipole–dipole interaction. J. Phys. B 2015, 48, 075501. [Google Scholar] [CrossRef] [Green Version]
- Dolde, F.; Jakobi, I.; Naydenov, B.; Zhao, N.; Pezzagna, S.; Trautmann, C.; Meijer, J.; Neumann, P.; Jelezko, F. Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 2013, 9, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Zhou, H.; Choi, S.; Landig, R.; Ho, W.W.; Isoya, J. Probing quantum thermalization of a disordered dipolar spin ensemble with discrete time-crystalline order. Phys. Rev. Lett. 2019, 122, 043603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, A.-B.A.; Hessian, H.A.; Eleuch, H. Generation of quantum coherence in two-qubit cavity system: Qubit-dipole coupling and decoherence effects. Phys. Scr. 2020, 95, 075104. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A. Geometric measure of nonlocality and quantum discord of two charge qubits with phase decoherence and dipole-dipole interaction. Rep. Math. Phys. 2013, 72, 121–132. [Google Scholar] [CrossRef]
- Da Hu, Z.; Wang, J.; Zhang, Y.; Qi Zhang, Y. Sudden transitions of trace distance discord of dipole-dipole coupled two qubits. Int. J. Mod. Phys. B 2015, 29, 1550138. [Google Scholar]
- Khan, S.; Jan, M. The effect of dipole-dipole interaction on tripartite entanglement in different cavities. Int. J. Theor. Phys. 2016, 55, 1515. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A.; Khalil, E.M.; Selim, M.M.; Eleuch, H. Quantum Fisher Information and Bures Distance Correlations of Coupled Two Charge-Qubits Inside a Coherent Cavity with the Intrinsic Decoherence. Symmetry 2021, 13, 352. [Google Scholar] [CrossRef]
- Klauder, J.R.; Anderson, P.W. Spectral diffusion decay in spin resonance experiments. Phys. Rev. 1962, 125, 912. [Google Scholar] [CrossRef]
- Ota, T.; Yusa, G.; Kumada, N.; Miyashita, S.; Fujisawa, T.; Hirayama, Y. Decoherence of nuclear spins due to dipole-dipole interactions probed by resistively detected nuclear magnetic resonance. Appl. Phys. Lett. 2007, 91, 193101. [Google Scholar] [CrossRef] [Green Version]
- Annabestani, R.; Cory, D.G. Dipolar relaxation mechanism of long-lived states of methyl groups. Quantum Inf. Process. 2018, 17, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimaudo, R.; Messina, A.; Nakazato, H. Exactly solvable time-dependent models of two interacting two-level systems. Phys. Rev. A 2016, 94, 022108. [Google Scholar] [CrossRef] [Green Version]
- Grimaudo, R.; Nakazato, H.; Messina, A. Two-qubit entanglement generation through non-Hermitian Hamiltonians induced by repeated measurements on an ancilla. Phys. Rev. Res. 2020, 2, 033092. [Google Scholar] [CrossRef]
- Castro, C.S.; Duarte, O.S.; Pires, D.P.; Soares-Pinto, D.O.; Reis, M.S. Thermal entanglement and teleportation in a dipolar interacting system. Nat. Phys. 2016, 380, 1571. [Google Scholar] [CrossRef]
- Reis, M.S. Fundamentals of Magnetism; Elsevier: New York, NY, USA, 2013. [Google Scholar]
- Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef] [Green Version]
- Peters, N.A.; Wei, T.-C.; Kwiat, P.G. Mixed-state sensitivity of several quantum-information benchmarks. Phys. Rev. A 2004, 70, 052309. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Eberly, J.H. Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 2004, 93, 140404. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A.; Hessian, H.A. Entanglement death and purity loss in a superconducting qubit coupled to a dephasing cavity. Phys. E 2012, 44, 1552. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khedr, A.N.; Mohamed, A.-B.A.; Abdel-Aty, A.-H.; Tammam, M.; Abdel-Aty, M.; Eleuch, H. Entropic Uncertainty for Two Coupled Dipole Spins Using Quantum Memory under the Dzyaloshinskii–Moriya Interaction. Entropy 2021, 23, 1595. https://doi.org/10.3390/e23121595
Khedr AN, Mohamed A-BA, Abdel-Aty A-H, Tammam M, Abdel-Aty M, Eleuch H. Entropic Uncertainty for Two Coupled Dipole Spins Using Quantum Memory under the Dzyaloshinskii–Moriya Interaction. Entropy. 2021; 23(12):1595. https://doi.org/10.3390/e23121595
Chicago/Turabian StyleKhedr, Ahmad N., Abdel-Baset A. Mohamed, Abdel-Haleem Abdel-Aty, Mahmoud Tammam, Mahmoud Abdel-Aty, and Hichem Eleuch. 2021. "Entropic Uncertainty for Two Coupled Dipole Spins Using Quantum Memory under the Dzyaloshinskii–Moriya Interaction" Entropy 23, no. 12: 1595. https://doi.org/10.3390/e23121595
APA StyleKhedr, A. N., Mohamed, A. -B. A., Abdel-Aty, A. -H., Tammam, M., Abdel-Aty, M., & Eleuch, H. (2021). Entropic Uncertainty for Two Coupled Dipole Spins Using Quantum Memory under the Dzyaloshinskii–Moriya Interaction. Entropy, 23(12), 1595. https://doi.org/10.3390/e23121595