Phylogenetic Curved Optimal Regression for Adaptive Trait Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimal Exponential Regression
2.1.1. OUGBM Model
2.1.2. OUGOU Model
2.2. Optimal Linear Regression
2.2.1. OUBM Model
2.2.2. OUOU Model
2.3. Optimal Adaptive-Trait Evolution along Phylogenetic Tree
2.4. Approximate Bayesian Computation
Algorithm 1: Approximate Bayesian computation for the models of adaptive trait evolution. |
|
2.5. Interpretation of Change of Optimum by Its Covariate
3. Results
3.1. Simulation
3.1.1. Parameter Estimation
3.1.2. Cross-Validation
3.2. Empirical Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 1985, 125, 1–15. [Google Scholar] [CrossRef]
- Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 1991, 45, 1065–1080. [Google Scholar] [CrossRef]
- Harvey, P.H.; Pagel, M.D. The Comparative Method in Evolutionary Biology; Oxford University Press: Oxford, UK, 1991; Volume 239. [Google Scholar]
- Felsenstein, J. Inferring Phylogenies; Sinauer Associates: Sunderland, MA, USA, 2004; Volume 2. [Google Scholar]
- O’Meara, B.C. Evolutionary inferences from phylogenies: A review of methods. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 267–285. [Google Scholar] [CrossRef]
- Hernández, C.E.; Rodríguez-Serrano, E.; Avaria-Llautureo, J.; Inostroza-Michael, O.; Morales-Pallero, B.; Boric-Bargetto, D.; Canales-Aguirre, C.B.; Marquet, P.A.; Meade, A. Using phylogenetic information and the comparative method to evaluate hypotheses in macroecology. Methods Ecol. Evol. 2013, 4, 401–415. [Google Scholar] [CrossRef]
- Pennell, M.W.; Harmon, L.J. An integrative view of phylogenetic comparative methods: Connections to population genetics, community ecology, and paleobiology. Ann. N. Y. Acad. Sci. 2013, 1289, 90–105. [Google Scholar] [CrossRef]
- Garamszegi, L.Z. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Concepts and Practice; Springer: London, UK, 2014. [Google Scholar]
- Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1989, 326, 119–157. [Google Scholar] [PubMed]
- Freckleton, R.P.; Harvey, P.H.; Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 2002, 160, 712–726. [Google Scholar] [CrossRef]
- Xiao, X.; White, E.; Hooten, M.; Durham, S. On the use of log-transform vs. nonlinear regression for analyzing biological power laws. Ecology 2011, 92, 1887–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmon, L. Phylogenetic Comparative Methods: Learning from Trees; CreateSpace Independent Publishing Platform: Charleston, SC, USA, 2018. [Google Scholar]
- Ives, A.R.; Garland, T., Jr. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 2009, 59, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Maddison, W.P.; Midford, P.E.; Otto, S.P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 2007, 56, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Packard, G.C. On the use of log-transformation versus nonlinear regression for analyzing biological power laws. Biol. J. Linn. Soc. 2014, 113, 1167–1178. [Google Scholar] [CrossRef] [Green Version]
- Klaassen, M.; Nolet, B.A. Stoichiometry of endothermy: Shifting the quest from nitrogen to carbon. Ecol. Lett. 2008, 11, 785–792. [Google Scholar] [CrossRef]
- Hume, I.D. Marsupial Nutrition; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Helgen, K.M.; Wells, R.T.; Kear, B.P.; Gerdtz, W.R.; Flannery, T.F. Ecological and evolutionary significance of sizes of giant extinct kangaroos. Aust. J. Zool. 2006, 54, 293–303. [Google Scholar] [CrossRef]
- Jhwueng, D.C. Modeling rate of adaptive trait evolution using Cox–Ingersoll–Ross process: An Approximate Bayesian Computation approach. Comput. Stat. Data Anal. 2020, 145, 106924. [Google Scholar] [CrossRef]
- Hansen, T.F.; Pienaar, J.; Orzack, S.H. A comparative method for studying adaptation to a randomly evolving environment. Evolution 2008, 62, 1965–1977. [Google Scholar] [CrossRef] [PubMed]
- Jhwueng, D.C.; Maroulas, V. Phylogenetic ornstein–uhlenbeck regression curves. Stat. Probab. Lett. 2014, 89, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Jhwueng, D.C.; Maroulas, V. Adaptive trait evolution in random environment. J. Appl. Stat. 2016, 43, 2310–2324. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, K.; Pienaar, J.; Mostad, P.; Andersson, S.; Hansen, T.F. A phylogenetic comparative method for studying multivariate adaptation. J. Theor. Biol. 2012, 314, 204–215. [Google Scholar] [CrossRef]
- Cressler, C.E.; Butler, M.A.; King, A.A. Detecting adaptive evolution in phylogenetic comparative analysis using the Ornstein–Uhlenbeck model. Syst. Biol. 2015, 64, 953–968. [Google Scholar] [CrossRef] [Green Version]
- Marass, F.; Mouliere, F.; Yuan, K.; Rosenfeld, N.; Markowetz, F. A phylogenetic latent feature model for clonal deconvolution. Ann. Appl. Stat. 2016, 10, 2377–2404. [Google Scholar] [CrossRef]
- Oksendal, B. Stochastic Differential Equations: An Introduction with Applications; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Ksendal, B. Stochastic differential equations. In Stochastic Differential Equations; Springer: Berlin, Germany, 2003; pp. 65–84. [Google Scholar]
- Vega, C.A.M. Calibration of the exponential Ornstein–Uhlenbeck process when spot prices are visible through the maximum log-likelihood method. Example with gold prices. Adv. Differ. Equations 2018, 2018, 269. [Google Scholar] [CrossRef]
- Lyasoff, A. Another look at the integral of exponential Brownian motion and the pricing of Asian options. Financ. Stochastics 2016, 20, 1061–1096. [Google Scholar] [CrossRef]
- Dufresne, D. The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuar. J. 1990, 1990, 39–79. [Google Scholar] [CrossRef]
- Dufresne, D. The integral of geometric Brownian motion. Adv. Appl. Probab. 2001, 33, 223–241. [Google Scholar] [CrossRef]
- Yor, M. On some exponential functionals of Brownian motion. Adv. Appl. Probab. 1992, 24, 509–531. [Google Scholar] [CrossRef] [Green Version]
- Burden, R.L.; Faires, J.D. Numerical Analysis, 9th ed.; Brooks Cole Publishing: Monterey, CA, USA, 2010. [Google Scholar]
- Borchers, H.W. Pracma: Practical Numerical Math Functions. R Package Version 2.2.9. 2019. Available online: https://CRAN.R-project.org/package=pracma (accessed on 12 September 2020).
- Baum, D. Trait evolution on a phylogenetic tree: Relatedness. Nat. Educ. 2008, 1, 191. [Google Scholar]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Csillery, K.; Francois, O.; Blum, M.G.B. abc: An R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 2012. [Google Scholar] [CrossRef] [Green Version]
- Blomberg, S.P.; Garland, T., Jr.; Ives, A.R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 2003, 57, 717–745. [Google Scholar] [CrossRef] [PubMed]
- Pagel, M. Inferring thetheirtorical patterns of biological evolution. Nature 1999, 401, 877–884. [Google Scholar] [CrossRef]
- Adams, D.C.; Felice, R.N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS ONE 2014, 9, e94335. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, K.; Liò, P. Modelling trait dependent speciation with Approximate Bayesian Computation. arXiv 2018, arXiv:1812.03715. [Google Scholar] [CrossRef]
- Lepers, C.; Billiard, S.; Porte, M.; Méléard, S.; Tran, V.C. Inference with selection, varying population size and evolving population structure: Application of ABC to a forward-backward coalescent process with interactions. arXiv 2019, arXiv:1910.10201. [Google Scholar] [CrossRef] [PubMed]
- Uyeda, J.C.; Harmon, L.J. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst. Biol. 2014, 63, 902–918. [Google Scholar] [CrossRef] [Green Version]
- Bastide, P.; Ho, L.S.T.; Baele, G.; Lemey, P.; Suchard, M.A. Efficient Bayesian Inference of General Gaussian Models on Large Phylogenetic Trees. arXiv 2020, arXiv:2003.10336. [Google Scholar]
- Stadler, T. TreeSim: Simulating Phylogenetic Trees. R package version 2.4. 2019. Available online: https://CRAN.R-project.org/package=TreeSim (accessed on 28 August 2020).
- Bo, L.; Wang, L.; Jiao, L. Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation. Neural Comput. 2006, 18, 961–978. [Google Scholar] [CrossRef] [PubMed]
- Janis, C.M.; Buttrill, K.; Figueirido, B. Locomotion in extinct giant kangaroos: Were sthenurines hop-less monsters? PLoS ONE 2014, 9, e109888. [Google Scholar] [CrossRef] [PubMed]
- Cooper, N.; Thomas, G.H.; Venditti, C.; Meade, A.; Freckleton, R.P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 2016, 118, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, W.; Nakagawa, S. Phylogenetic comparative methods. Curr. Biol. 2017, 27, R333–R336. [Google Scholar] [CrossRef] [PubMed]
- Jhwueng, D.C. Building an adaptive trait simulator package to infer parametric diffusion model along phylogenetic tree. MethodsX 2020, 7, 100978. [Google Scholar] [CrossRef] [PubMed]
Par | True 1 | Prior 1 | True 2 | Prior 2 |
---|---|---|---|---|
0.50 | 0.20 | (rate = 5) | ||
0.125 | 0.125 | (rate = 8) | ||
0.00 | 1.00 | (mean = 1, sd = 1) | ||
2.50 | 0.5 | (sh = 2,sc = 0.5) | ||
1.00 | 0.5 | (sh = 2, sc = 0.5) | ||
0.00 | 0.00 | |||
1.00 | −2.00 | |||
−0.50 | −0.5 |
Model | Taxa | |||||
---|---|---|---|---|---|---|
True Value | ||||||
OUGBM | 16 | 0.52 (0.06, 0.96) | 2.16 (0.26, 4.59) | 0.89 (0.16, 1.83) | ||
32 | 0.53 (0.08, 0.95) | 1.83 (0.25, 4.3) | 0.95 (0.2, 1.82) | |||
64 | 0.54 (0.09, 0.95) | 1.66 (0.2, 4.1) | 0.93 (0.2, 1.78) | |||
128 | 0.52 (0.08, 0.95) | 1.65 (0.21, 4.07) | 0.91 (0.2, 1.78) | |||
OUGOU | 16 | 0.44 (0.04, 0.95) | 0.12 (0.01, 0.24) | −1.14 (−4.49, 2.81) | 2.25 (0.65, 4.28) | 1.16 (0.38, 1.88) |
32 | 0.47 (0.04, 0.95) | 0.12 (0.01, 0.24) | −1.22 (−4.59, 2.75) | 2.52 (0.82, 4.56) | 0.99 (0.19, 1.83) | |
64 | 0.48 (0.04, 0.95) | 0.12 (0.01, 0.24) | −1.16 (−4.58, 2.93) | 2.61 (0.87, 4.59) | 0.95 (0.18, 1.81) | |
128 | 0.49 (0.04, 0.95) | 0.12 (0.01, 0.24) | −1.16 (−4.58, 2.88) | 2.57 (0.79, 4.57) | 0.9 (0.16, 1.78) | |
OUBM | 16 | 0.5 (0.05, 0.95) | 2.14 (0.59, 4.22) | 1.13 (0.11, 1.92) | ||
32 | 0.56 (0.07, 0.96) | 2.05 (0.55, 4.21) | 1.05 (0.1, 1.92) | |||
64 | 0.52 (0.06, 0.96) | 1.95 (0.48, 4.12) | 1.07 (0.11, 1.92) | |||
128 | 0.54 (0.06, 0.96) | 1.92 (0.51, 4.05) | 1.06 (0.11, 1.91) | |||
OUOU | 16 | 0.53 (0.05, 0.95) | 0.12 (0.01, 0.24) | 0.63 (−4.15, 4.49) | 2.13 (0.64, 4.11) | 1.08 (0.12, 1.92) |
32 | 0.55 (0.05, 0.95) | 0.12 (0.01, 0.24) | 0.94 (−4.15, 4.56) | 1.9 (0.42, 4) | 1.06 (0.13, 1.9) | |
64 | 0.53 (0.05, 0.94) | 0.12 (0.01, 0.24) | 0.79 (−4.18, 4.54) | 1.85 (0.42, 3.96) | 1.06 (0.12, 1.91) | |
128 | 0.55 (0.05, 0.95) | 0.12 (0.01, 0.24) | 0.79 (−4.26, 4.54) | 1.81 (0.44, 3.92) | 1.05 (0.11, 1.9) |
Model | Taxa | |||
---|---|---|---|---|
True Value | ||||
OUGBM | 16 | −0.08 (−0.91, 0.84) | 1.01 (0.14, 1.89) | −0.46 (−0.94, −0.05) |
32 | −0.02 (−0.9, 0.87) | 0.95 (0.12, 1.87) | −0.47 (−0.95, −0.05) | |
64 | −0.02 (−0.91, 0.89) | 0.96 (0.14, 1.86) | −0.48 (−0.95, −0.05) | |
128 | 0.01 (−0.9, 0.9) | 0.97 (0.14, 1.86) | −0.48 (−0.95, −0.04) | |
OUGOU | 16 | −0.01 (−0.92, 0.88) | 0.88 (0.06, 1.89) | −0.47 (−0.92, −0.05) |
32 | −0.03 (−0.92, 0.88) | 0.89 (0.07, 1.89) | −0.48 (−0.94, −0.05) | |
64 | −0.05 (−0.92, 0.88) | 0.88 (0.07, 1.89) | −0.48 (−0.93, −0.05) | |
128 | −0.05 (−0.92, 0.88) | 0.91 (0.07, 1.89) | −0.49 (−0.94, −0.05) | |
OUBM | 16 | −0.03 (−0.88, 0.89) | 0.8 (0.11, 1.81) | |
32 | 0.01 (−0.89, 0.9) | 0.78 (0.09, 1.82) | ||
64 | −0.01 (−0.9, 0.89) | 0.79 (0.09, 1.83) | ||
128 | −0.02 (−0.9, 0.89) | 0.8 (0.09, 1.83) | ||
OUOU | 16 | −0.11 (−0.9, 0.88) | 0.86 (0.11, 1.81) | |
32 | −0.11 (−0.9, 0.88) | 0.81 (0.09, 1.83) | ||
64 | −0.1 (−0.89, 0.88) | 0.85 (0.1, 1.85) | ||
128 | −0.09 (−0.89, 0.88) | 0.82 (0.1, 1.84) |
Model | Parameter | |||||||
---|---|---|---|---|---|---|---|---|
EXP | 0.5987 | 0.2946 | 0.4251 | |||||
OUGBM | 0.0016 | 1.3420 | 0.7888 | 0.6848 | 0.2985 | 0.4281 | ||
OUGOU | 0.0014 | 0.0015 | 0.8034 | 0.5480 | −1.2113 | 0.5208 | 0.3258 | 0.4293 |
LS | 0.2078 | 0.5125 | ||||||
OUBM | 0.0015 | 1.4413 | 0.7392 | 0.1504 | 0.4996 | |||
OUOU | 0.0014 | 0.0014 | 0.9952 | 0.6931 | −0.5732 | 0.2392 | 0.5713 |
0.3360 | 0.2810 | 0.2240 | 0.1590 | ||
---|---|---|---|---|---|
Rank | Model | OUGBM | OUGOU | OUBM | OUOU |
1st | OUGBM | 1.0000 | 1.1957 | 1.5000 | 2.1132 |
2nd | OUGOU | 0.8363 | 1.0000 | 1.2545 | 1.7673 |
3rd | OUBM | 0.6667 | 0.7972 | 1.0000 | 1.4088 |
4th | OUOU | 0.4732 | 0.5658 | 0.7098 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jhwueng, D.-C.; Wang, C.-P. Phylogenetic Curved Optimal Regression for Adaptive Trait Evolution. Entropy 2021, 23, 218. https://doi.org/10.3390/e23020218
Jhwueng D-C, Wang C-P. Phylogenetic Curved Optimal Regression for Adaptive Trait Evolution. Entropy. 2021; 23(2):218. https://doi.org/10.3390/e23020218
Chicago/Turabian StyleJhwueng, Dwueng-Chwuan, and Chih-Ping Wang. 2021. "Phylogenetic Curved Optimal Regression for Adaptive Trait Evolution" Entropy 23, no. 2: 218. https://doi.org/10.3390/e23020218
APA StyleJhwueng, D. -C., & Wang, C. -P. (2021). Phylogenetic Curved Optimal Regression for Adaptive Trait Evolution. Entropy, 23(2), 218. https://doi.org/10.3390/e23020218