Information Measures for Generalized Order Statistics and Their Concomitants under General Framework from Huang-Kotz FGM Bivariate Distribution
Abstract
:1. Introduction
2. Concomitants of DGOs Based on HK–FGM
2.1. Marginal Distribution of Concomitants
2.2. Joint Distribution of Concomitants of DGOSs in HK–FGM Model
3. The Shannon Entropy for Concomitants of DGOSs from the HK–FGM Family
3.1. Exponential Distribution
3.2. Pareto Distribution
3.3. Power Function Distribution
4. The FI Number for Concomitants of DGOSs from the HK–FGM Family
- (I)
- where is any scale parameter.
- (II)
- where is any location parameter.
4.1. Exponential Distribution
4.2. Pareto Distribution
4.3. Power Function Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamps, U. A Concept of Generalized Order Statistics; Teubner: Stuttgart, Germany, 1995. [Google Scholar]
- Burkschat, M.; Cramer, E.; Kamps, U. Dual generalized order statistics. Metron 2003, 61, 13–26. [Google Scholar]
- Kamps, U.; Cramer, E. On distribution of generalized order statistics. Statistics 2001, 35, 269–280. [Google Scholar] [CrossRef]
- Barakat, H.M.; El-Adll, M.E. Asymptotic theory of extreme dual generalized order statistics. Stat. Probab. Lett. 2009, 79, 1252–1259. [Google Scholar] [CrossRef]
- Barakat, H.M.; El-Adll, M.E. On the limit distribution of lower extreme generalized order statistics. Proc. Math. Sci. 2012, 122, 297–311. [Google Scholar] [CrossRef]
- Cramer, E. Contributions to Generalized Order Statistics. Ph.D. Thesis, University of Oldenburg, Oldenburg, Germany, 2003. [Google Scholar]
- Morgenstern, D. Einfache Beispiele Zweidimensionaler Verteilungen. Mitt. Math. Stat. 1956, 8, 234–235. [Google Scholar]
- Gumbel, E.J. Bivariate exponential distributions. J. Amer. Stat. Ass. 1960, 55, 698–707. [Google Scholar] [CrossRef]
- Farlie, D.J.G. The performance of some correlation coefficients for a general bivariate distribution. Biometrika 1960, 47, 307–323. [Google Scholar] [CrossRef]
- Abd Elgawad, M.A.; Alawady, M.A.; Barakat, H.M.; Xiong, S. Concomitants of generalized order statistics from Huang-Kotz Farlie-Gumbel-Morgenstern bivariate distribution: Some information measures. Bull. Malays. Math. Sci. Soc. 2020, 43, 2627–2645. [Google Scholar] [CrossRef]
- Abd Elgawad, M.A.; Barakat, H.M.; Alawady, M.A. Concomitants of generalized order statistics under the generalization of Farlie-Gumbel-Morgenstern type bivariate distributions. Bull. Iran. Math. Soc. 2020. [Google Scholar] [CrossRef]
- Abd Elgawad, M.A.; Barakat, H.M.; Alawady, M.A. Concomitants of generalized order statistics from bivariate Cambanis family: Some information measures. Bull. Iranian. Math. Soc. 2021. [Google Scholar] [CrossRef]
- Alawady, M.A.; Barakat, H.M.; Xiong, S.; Abd Elgawad, M.A. Concomitants of generalized order statistics from iterated Farlie–Gumbel–Morgenstern type bivariate distribution. Commum. Stat. Theory Meth. 2020. [Google Scholar] [CrossRef]
- Alawady, M.A.; Barakat, H.M.; Xiong, S.; Abd Elgawad, M.A. On concomitants of dual generalized order statistics from Bairamov-Kotz-Becki Farlie-Gumbel-Morgenstern bivariate distributions. Asian-Eur. J. Math. 2021. [Google Scholar] [CrossRef]
- Alawady, M.A.; Barakat, H.M.; Abd Elgawad, M.A. Concomitants of generalized order statistics from bivariate Cambanis family of distributions under a general setting. Bull. Malays. Math. Sci. Soc. 2021. to appear. [Google Scholar]
- Amblard, C.; Girard, S. Symmetry and dependence properties within a semiparametric family of bivariate copulas. J. Nonparametr. Stat. 2002, 14, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Bairamov, I.; Kotz, S.; Becki, M. New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics. J. Appl. Stat. 2001, 28, 521–536. [Google Scholar] [CrossRef]
- Barakat, H.M.; Nigm, E.M.; Syam, A.H. Concomitants of order statistics and record values from Bairamov–Kotz–Becki–FGM bivariate–generalized exponential distribution. Filomat 2018, 32, 3313–3324. [Google Scholar] [CrossRef]
- Barakat, H.M.; Nigm, E.M.; Syam, A.H. Concomitants of ordered variables from Huang–Kotz FGM type bivariate-generalized exponential distribution. Bull. Malays. Math. Sci. Soc. 2019, 42, 337–353. [Google Scholar] [CrossRef]
- Barakat, H.M.; Nigm, E.M.; Alawady, M.A.; Husseiny, I.A. Concomitants of Order Statistics and Record Values from Iterated FGM Type Bivariate-Generalized Exponential Distribution. REVSTAT, to Appear. 2020. Available online: https://www.ine.pt/revstat/pdf/concomitantsoforderstatisticsandrecords.pdf (accessed on 24 February 2021).
- Domma, F.; Giordano, S. Concomitants of m-generalized order statistics from generalized Farlie-Gumbel-Morgenstern distribution family. J. Comput. Appl. Math. 2016, 294, 413–435. [Google Scholar] [CrossRef]
- Fischer, M.; Klein, I. Constructing generalized FGM copulas by means of certain univariate distributions. Metrika 2007, 65, 243–260. [Google Scholar] [CrossRef]
- Mohamed, M.S. On concomitants of ordered random variables under general forms of Morgenstern family. Filomat 2019, 33, 2771–2780. [Google Scholar] [CrossRef]
- Mokhlis, N.A.; Khames, S.K. Concomitants of record values from a general Farlie-Gumbel-Morgenstern distribution. J. Adv. Math. 2014, 7, 1328–1340. [Google Scholar]
- Mokhlis, N.A.; Khames, S.K. On concomitants of record values from generalized Farlie-Gumbel-Morgenstern distribution. J. Stat. Sci. Appl. 2014, 2, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.S.; Kotz, S. Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb. Metrika 1999, 49, 135–145. [Google Scholar] [CrossRef]
- David, H.A. Concomitants of order statistics. Bull. Int. Stat. Inst. 1973, 45, 295–300. [Google Scholar]
- David, H.A.; Nagaraja, H.N. Concomitants of Order Statistics. In Handbook of Statistics; Balakrishnan, N., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; Volume 16, pp. 487–513. [Google Scholar]
- Beg, M.I.; Ahsanullah, M. Concomitants of generalized order statistics from Farlie-Gumbel-Morgenstern distributions. Stat. Methodol. 2008, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
- El-Din, M.M.; Amein, M.M.; Mohamed, M.S. Concomitants of case-II of generalized order statistics from Farlie-Gumbel-Morgenstern distributions. J. Stat. Appl. Probab. 2015, 3, 345–353. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Abo Eleneen, Z.A. The entropy of progressively censored samples. Entropy 2011, 3, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Sun, H.; Lee, K. An Estimation of the entropy for a Rayleigh distribution based on doubly-generalized type-II hybrid censored samples. Entropy 2014, 16, 3655–3669. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Gui, W.; Shan, Y. Statistical inference on the Shannon entropy of inverse Weibull distribution under the progressive first-failure censoring. Entropy 2019, 21, 1209. [Google Scholar] [CrossRef] [Green Version]
- Barakat, H.M.; Husseiny, I.A. Some information measures in concomitants of generalized order statistics under iterated Farlie-Gumbel-Morgenstern bivariate type. Quaest. Math. 2020. to appear. [Google Scholar] [CrossRef]
- Frieden, B.R. Physics from Fisher Information—A Unification; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Tahmasebi, S.; Jafari, A.A. Fisher information number for concomitants of generalized order statistics in Morgenstern family. J. Inform. Math. Sci. 2013, 5, 15–20. [Google Scholar]
- El-din, M.M.; Amein, M.M.; Ali, N.S.; Mohamed, M.S. Measures of information for concomitants of generalized order statistics from subfamilies of Farlie-Gumbel-Morgenstern distributions. Arab. J. Math. 2015, 4, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Bairamov, I.; Eryilmaz, S. Spacings, exceedances and concomitants in progressive type-II censoring scheme. J. Stat. Plan. Inference 2006, 136, 527–536. [Google Scholar] [CrossRef]
- Papaioannou, T.; Ferentinos, K. On two forms of Fishers measure of information. Commun. Stat. Theory Methods 2005, 34, 1461–1470. [Google Scholar] [CrossRef]
- Frieden, B.R.; Gatenby, R.A. Exploratory Data Analysis Using Fisher Information; Springer: London, UK, 2007. [Google Scholar]
- Ahmad, I.A.; Lin, P. A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Trans. Inf. Theory 1997, 22, 372–375. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Elgawad, M.A.; Barakat, H.M.; Xiong, S.; Alyami, S.A. Information Measures for Generalized Order Statistics and Their Concomitants under General Framework from Huang-Kotz FGM Bivariate Distribution. Entropy 2021, 23, 335. https://doi.org/10.3390/e23030335
Abd Elgawad MA, Barakat HM, Xiong S, Alyami SA. Information Measures for Generalized Order Statistics and Their Concomitants under General Framework from Huang-Kotz FGM Bivariate Distribution. Entropy. 2021; 23(3):335. https://doi.org/10.3390/e23030335
Chicago/Turabian StyleAbd Elgawad, Mohamed A., Haroon M. Barakat, Shengwu Xiong, and Salem A. Alyami. 2021. "Information Measures for Generalized Order Statistics and Their Concomitants under General Framework from Huang-Kotz FGM Bivariate Distribution" Entropy 23, no. 3: 335. https://doi.org/10.3390/e23030335