Critical Comparison of MaxCal and Other Stochastic Modeling Approaches in Analysis of Gene Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single Gene Auto-Activation (SGAA) Circuit
2.1.1. Generating Synthetic Data
2.1.2. The Detailed Model for Inference
2.1.3. CGM Model for Inference
2.1.4. MaxCal Model for Inference
2.2. Two-Gene Toggle Switch (TS) Circuit
2.2.1. Generating Synthetic Data
2.2.2. Detailed Model
2.2.3. Coarse Grain Model
2.2.4. MaxCal
2.3. Calculation of Trajectory Likelihood
2.3.1. Calculation of Trajectory Likelihood for SGAA
2.3.2. Calculation of Trajectory Likelihood for TS
3. Results
3.1. Comparison of Three Models for SGAA
3.2. Comparison of Three Models in TS
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MaxCal | Maximum Caliber |
DM | Detailed Model |
CGM | Coarse Grain Model |
SGAA | Single Gene Auto Activation |
TS | Toggle Switch |
CME | Chemical Master Equation |
FSP | Finite State Projection |
References
- Gardner, T.; Cantor, T.C.; Collins, J. Construction of a Genetic Toggle Switch in Escherichia coli. Nature 2000, 403, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Elowitz, M.; Leibler, S. A Synthetic Oscillatory Network of Transcriptional Regulators. Nature 2000, 403, 335–338. [Google Scholar] [CrossRef]
- Alon, U. Network Motifs: Theory and Experimental Approaches. Nat. Rev. Genet. 2007, 8, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.; Choi, Y.; Ma, W.; Pomerening, J.; Tang, C.; Ferrell, J. Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops. Science 2008, 321, 126–129. [Google Scholar] [CrossRef] [Green Version]
- Nevozhay, D.; Adams, R.; Itallie, E.V.; Bennett, M.; Balázsi, G. Mapping the Environmental Fitness Landscape of a Synthetic Gene Circuit. PLoS Comput. Biol. 2012, 8, e1002480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevozhay, D.; Adams, R.; Murphy, K.; Josic, K.; Balazsi, G. Negative auto regulation linearizes the dose–response and suppresses the heterogeneity of gene expression. Proc. Natl. Acad. Sci. USA 2009, 106, 5123–5128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, S.; Xu, W.; Medford, J.; Prasad, A. Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems. PLoS Comput. Biol. 2014, 10, e1003533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wu, F.; Flores, K.; Lai, Y.; Wang, X. Build to Understand: Synthetic Approaches to Biology. Integr. Biol. 2016, 8, 394–408. [Google Scholar] [CrossRef] [Green Version]
- Mukherji, S.; van Oudenaarden, A. Synthetic Biology: Understanding Biological Design from Synthetic Circuits. Nat. Rev. Genet. 2009, 10, 859–871. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Wang, X. Applications of Synthetic Gene Networks. Sci. Prog. 2015, 98, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Aymoz, D.; Wosika, V.; Durandau, E.; Pelet, S. Real-time quantification of protein expression at the single-cell level via dynamic protein synthesis translocation reporters. Nat. Commun. 2016, 7, 11304. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Jordi, C.; Son, M.; Phan, H.; Drayman, N.; Abasiyanik, M.; Vistain, L.; Tu, H.-L.; Tay, S. Ultra-sensitive digital quantification of proteins and mRNA in single cells. Nat. Commun. 2019, 10, 3544. [Google Scholar] [CrossRef]
- Mair, F.; Erickson, J.; Voillet, V.; Simoni, Y.; Bi, T.; Tyznik, A.; Martin, J.; Gottardo, R.; Newell, E.; Prlic, M. A Targeted Multi-omic Analysis Approach Measures Protein Expression and Low-Abundance Transcripts on the Single-Cell Level. Cell Rep. 2020, 31, 107499. [Google Scholar] [CrossRef]
- Munsky, B.; Trinh, B.; Khammash, M. Listening to the Noise: Random Fluctuations Reveal Gene Network Parameters. Mol. Syst. Biol. 2009, 5, 318. [Google Scholar] [CrossRef] [PubMed]
- Lillacci, G.; Khammash, M. Parameter Estimation and Model Selection in Computational Biology. PLoS Comput. Biol. 2010, 6, e1000696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zechner, C.; Ruess, J.; Krenn, R.; Pelet, S.; Peter, M.; Lagers, J.; Koeppl, H. Moment-Based Inference Predicts Bimodality in Transient Gene Expression. Proc. Natl. Acad. Sci. USA 2012, 109, 8340–8345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillacci, G.; Khammash, M. A Distribution-Matching Method for Parameter Estimation and Model Selection in Computational Biology. Int. J. Robust Nonlinear Control 2012, 22, 1065–1081. [Google Scholar] [CrossRef]
- Ruess, J.; Milias-Argeitis, A.; Lygeros, J. Designing Experiments to Understand the Variability in Biochemical Reaction Networks. J. R. Soc. Interface 2013, 10, 20130588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillacci, G.; Khammash, M. The Signal within the Noise: Efficient Inference of Stochastic Gene Regulation Models Using Fluorescence Histograms and Stochastic Simulations. Bioinformatics 2013, 29, 2311–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kepler, T.; Elston, T. Stochasticity in Transcriptional Regulation: Origins, Consequences, and Mathematical Representations. Biophys. J. 2001, 81, 3116–3136. [Google Scholar] [CrossRef] [Green Version]
- Lipshtat, A.; Loinger, A.; Balaban, N.; Biham, O. Genetic Toggle Switch without Cooperative Binding. Phys. Rev. Lett. 2006, 96, 188101. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, D. Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Gillespie, D.T. Stochastic simulation of chemical kinetic. Annu. Rev. Phys. Chem. 2007, 58, 35. [Google Scholar] [CrossRef] [PubMed]
- Jong, H. Modeling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol. 2004, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Munsky, B.; Khammash, M. The Finite State Projection Algorithm for the Solution of the Chemical Master Equation. J. Chem. Phys. 2006, 124, 044104. [Google Scholar] [CrossRef] [PubMed]
- Munsky, B.; Khammash, M. A multiple time interval finite state projection algorithm for the solution to the chemical master equation. J. Comput. Phys. 2007, 226, 818. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.; Kondev, J.; Theriot, J.; Garcia, H.G. Physical Biology of the Cell; Garland Science: New York, NY, USA, 2013. [Google Scholar]
- Cherry, J.; Adler, F. How to make a biological switch. J. Theor. Biol. 2000, 203, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhdanov, V. Transient stochastic bistable kinetics of gene transcription during the cellular growth. Chem. Phys. Lett. 2006, 424, 394. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, F.; Zhang, X.-P.; Wang, W. Robustness analysis of cellular memory in an autoactivating positive feedback system. FEBS Lett. 2008, 582, 3776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frigola, D.; Casanellas, L.; Sancho, J.; Ibanes, M. Asymmetric Stochastic Switching Driven by Intrinsic Molecular Noise. PLoS ONE 2012, 7, e31407. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.; Dixit, P.; Agozzino, L.; Dill, K. The Maximum Caliber Variational Principle for Nonequilibria. Annu. Rev. Phys. Chem. 2020, 71, 213–238. [Google Scholar] [CrossRef] [Green Version]
- Pressé, S.; Ghosh, K.; Dill, K. Modeling Stochastic Dynamics in Biochemical Systems with Feedback Using Maximum Caliber. J. Phys. Chem. B 2011, 115, 6202–6212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firman, T.; Balazsi, G.; Ghosh, K. Building Predictive Models of Genetic Circuits Using the Principle of Maximum Caliber. Biophys. J. 2017, 113, 2121–2130. [Google Scholar] [CrossRef] [PubMed]
- Firman, T.; Wedekind, S.; McMorrow, T.; Ghosh, K. Maximum Caliber Can Characterize Genetic Switches with Multiple Hidden Species. J. Phys. Chem. B 2018. [Google Scholar] [CrossRef]
- Firman, T.; Amgalan, A.; Ghosh, K. Maximum Caliber can build and infer models of oscillation in three-gene feedback network. J. Phys. Chem. B 2019, 123, 343–355. [Google Scholar] [CrossRef]
- Pressé, S.; Ghosh, K.; Lee, J.; Dill, K. Principle of Maximum Entropy and Maximum Caliber in Statistical Physics. Rev. Mod. Phys. 2013, 85, 1115–1141. [Google Scholar] [CrossRef] [Green Version]
- Dixit, P.; Wagoner, J.; Weistuch, C.; Pressé, S.; Ghosh, K.; Dill, K. Perspective: Maximum Caliber is a General Variational Principle for Dynamical Systems. J. Chem. Phys. 2018, 148, 010901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, A. Model Genetic Circuits Encoding Autoregulatory Transcription Factors. J. Theor. Biol. 1995, 172, 169–185. [Google Scholar] [CrossRef]
- Smolen, P.; Baxter, D.; Byrne, J. Frequency, Selectivity, Multistability, and Oscillations Emerge from Models of Genetic Regulatory Systems. Am. J. Physiol. 1998, 274, C531–C542. [Google Scholar] [CrossRef]
- Becksei, A.; Seraphin, B.; Serrano, L. Positive Feedback in Eukaryotic Gene Networks: Cell Differentiation by Graded to Binary Response Conversion. EMBO J. 2001, 15, 2528–2535. [Google Scholar]
- Tyson, J.; Chen, K.; Novak, B. Sniffers, Buzzers, Toggles and Blinkers: Dynamics of Regulatory and Signaling Pathways in the Cell. Curr. Opin. Cell Biol. 2003, 15, 221–231. [Google Scholar] [CrossRef]
- Bishop, L.; Qian, H. Stochastic Bistability and Bifurcation in a Mesoscopic Signaling System with Autocatalytic Kinase. Biophys. J. 2010, 98, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faucon, P.; Pardee, K.; Kumar, R.; Li, H.; Loh, Y.-H.; Wang, X. Gene Networks of Fully Connected Triads with Complete Auto-Activation Enable Multistability and Stepwise Stochastic Transitions. PLoS ONE 2014, 9, e102873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | (s) | (s) | (s) |
---|---|---|---|
True | |||
DM | |||
CGM | |||
MaxCal |
Method | Max N | Matrix Size | Unit Operation Time (ms) | Total Time (ms) |
---|---|---|---|---|
DM | 92 | |||
CGM | 92 | |||
MaxCal | 92 |
Method | (s) | (s) | (s) |
---|---|---|---|
True | |||
DM | |||
CGM | |||
MaxCal |
Method | Max N | Matrix Size | Unit Operation Time (s) | Total Time (s) |
---|---|---|---|---|
DM | 59 | 13,925 × 13,925 | 106,878 ± 19,765 | |
CGM | 59 | 14,124 ± 12,493 | ||
MaxCal | 59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firman, T.; Huihui, J.; Clark, A.R.; Ghosh, K. Critical Comparison of MaxCal and Other Stochastic Modeling Approaches in Analysis of Gene Networks. Entropy 2021, 23, 357. https://doi.org/10.3390/e23030357
Firman T, Huihui J, Clark AR, Ghosh K. Critical Comparison of MaxCal and Other Stochastic Modeling Approaches in Analysis of Gene Networks. Entropy. 2021; 23(3):357. https://doi.org/10.3390/e23030357
Chicago/Turabian StyleFirman, Taylor, Jonathan Huihui, Austin R. Clark, and Kingshuk Ghosh. 2021. "Critical Comparison of MaxCal and Other Stochastic Modeling Approaches in Analysis of Gene Networks" Entropy 23, no. 3: 357. https://doi.org/10.3390/e23030357
APA StyleFirman, T., Huihui, J., Clark, A. R., & Ghosh, K. (2021). Critical Comparison of MaxCal and Other Stochastic Modeling Approaches in Analysis of Gene Networks. Entropy, 23(3), 357. https://doi.org/10.3390/e23030357