Estimating Simultaneous Equation Models through an Entropy-Based Incremental Variational Bayes Learning Algorithm
Abstract
:1. Introduction
2. Methodology
2.1. Simultaneous Equation Models (SEMs)
2.2. Entropy-Based Incremental Variational Bayes Learning Algorithm (EBIVB)
3. Experiment Results
3.1. Data-Generation Process
3.2. Simulation Experiments
3.2.1. First Experiment—Model Selection
3.2.2. Second Experiment—Solution-Estimate Analysis
4. Empirical Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hausman, J.A. Specification and estimation of simultaneous equation models. Handb. Econom. 1983, 1, 391–448. [Google Scholar]
- Klein, L.R. Economic Fluctuations in the United States, 1921–1941; John Wiley & Sons, Inc.: New York, NY, USA, 1950. [Google Scholar]
- Dornbusch, R.; Fischer, S. Macroeconomics, 3rd ed.; Little, Brown: New York, NY, USA, 1984. [Google Scholar]
- King, T.M. Using simultaneous equation modeling for defining complex phenotypes. BMC Genet. BioMed Cent. 2003, 4, S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ressler, R.W.; Waters, M.S. Female earnings and the divorce rate: A simultaneous equations model. Appl. Econ. 2000, 32, 1889–1898. [Google Scholar] [CrossRef]
- Andrews, D.W. Tests for parameter instability and structural change with unknown change point. Econom. J. Econom. Soc. 1993, 61, 821–856. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Perron, P. Estimating and testing linear models with multiple structural changes. Econometrica 1998, 66, 47–78. [Google Scholar] [CrossRef]
- Yao, Y.C. Estimating the number of change-points via Schwarz’criterion. Stat. Probab. Lett. 1988, 6, 181–189. [Google Scholar] [CrossRef]
- Liu, J.; Wu, S.; Zidek, J.V. On segmented multivariate regression. Stat. Sin. 1997, 7, 497–525. [Google Scholar]
- Ninomiya, Y. Information criterion for Gaussian change-point model. Stat. Probab. Lett. 2005, 72, 237–247. [Google Scholar] [CrossRef]
- Hall, A.R.; Osborn, D.R.; Sakkas, N. Inference on structural breaks using information criteria. Manch. Sch. 2013, 81, 54–81. [Google Scholar] [CrossRef] [Green Version]
- McZgee, V.E.; Carleton, W.T. Piecewise regression. J. Am. Stat. Assoc. 1970, 65, 1109–1124. [Google Scholar] [CrossRef]
- Dunicz, B. Discontinuities in the surface structure of alcohol-water mixtures. Kolloid-Z. Z. Polymere 1969, 230, 346–357. [Google Scholar] [CrossRef]
- Sprent, P. Some hypotheses concerning two phase regression lines. Biometrics 1961, 17, 634–645. [Google Scholar] [CrossRef]
- Werner, R.; Valev, D.; Danov, D.; Guineva, V. Study of structural break points in global and hemispheric temperature series by piecewise regression. Adv. Space Res. 2015, 56, 2323–2334. [Google Scholar] [CrossRef]
- Muthén, B.O. Latent variable modeling in heterogeneous populations. Psychometrika 1989, 54, 557–585. [Google Scholar] [CrossRef]
- Kohli, A.K. Effects of supervisory behavior: The role of individual differences among salespeople. J. Mark. 1989, 53, 40–50. [Google Scholar] [CrossRef]
- Day, R.L. Extending the concept of consumer satisfaction. ACR N. Am. Adv. 1977, 4, 149–154. [Google Scholar]
- Jedidi, K.; Jagpal, H.S.; DeSarbo, W.S. Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Mark. Sci. 1997, 16, 39–59. [Google Scholar] [CrossRef]
- Jöreskog, K.G. Simultaneous factor analysis in several populations. Psychometrika 1971, 36, 409–426. [Google Scholar] [CrossRef]
- Sörbom, D. A general method for studying differences in factor means and factor structure between groups. Br. J. Math. Stat. Psychol. 1974, 27, 229–239. [Google Scholar] [CrossRef]
- Jedidi, K.; Jagpal, H.S.; DeSarbo, W.S. STEMM: A general finite mixture structural equation model. J. Classif. 1997, 14, 23–50. [Google Scholar] [CrossRef]
- Jedidi, K.; Ramaswamy, V.; DeSarbo, W.S.; Wedel, M. On estimating finite mixtures of multivariate regression and simultaneous equation models. Struct. Equ. Model. A Multidiscip. J. 1996, 3, 266–289. [Google Scholar] [CrossRef]
- Aitkin, M.; Anderson, D.; Hinde, J. Statistical modelling of data on teaching styles. J. R. Stat. Soc. Ser. A Gen. 1981, 144, 419–448. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Basford, K.E. Mixture models. Inference and applications to clustering. In Statistics: Textbooks and Monographs; Dekker: New York, NY, USA, 1988. [Google Scholar]
- Bernal-Rusiel, J.L.; Greve, D.N.; Reuter, M.; Fischl, B.; Sabuncu, M.R.; Initiative, A.D.N. Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage 2013, 66, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLachlan, G. Discriminant Analysis and Statistical Pattern Recognition; John Wiley and Sons: Hoboken, NJ, USA, 2004; Volume 544. [Google Scholar]
- Chang, W.C. On using principal components before separating a mixture of two multivariate normal distributions. Appl. Stat. 1983, 32, 267–275. [Google Scholar] [CrossRef]
- Damodar, N. Basic Econometrics; The Mc-Graw Hill: New York, NY, USA, 2004. [Google Scholar]
- Dhrymes, P.J. Econometrics: Statistical Foundations and Applications; Springer: New York, NY, USA, 1974. [Google Scholar]
- Hurvich, C.M.; Tsai, C.L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Gorobets, A.A. The Optimal Prediction Simultaneous Equations Selection; Technical Report; 2004. Available online: https://repub.eur.nl/pub/1839 (accessed on 24 March 2021).
- Jain, A.; Dubes, R.; Mao, J. Statistical Pattern Recognition: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–38. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.; Tiao, G.C. Bayesian Inference in Statistical Analysis; John Wiley and Sons: Hoboken, NJ, USA, 2011; Volume 40. [Google Scholar]
- Husmeier, D. The Bayesian Evidence Scheme for Regularizing Probability-Density Estimating Neural Networks. Neural Comput. 2000, 12, 2685–2717. [Google Scholar] [CrossRef] [PubMed]
- MacKay, D. Introduction to Monte Carlo Methods; Learning in Graphical Models; Jordan, M.I., Ed.; MIT Press: Cambridge, MA, USA, 1999; pp. 175–204. [Google Scholar]
- Nasios, N.; Bors, A. Variational Learning for Gaussian Mixtures. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2006, 36, 849–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñalver, A.; Escolano, F. Entropy-Based Incremental Variational Bayes Learning of Gaussian Mixtures. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 534–540. [Google Scholar] [CrossRef]
- Corduneau, A.; Bishop, C. Variational Bayesian Model Selection for Mixture Distributions; Morgan Kaufmann: Burlington, MA, USA, 2001; pp. 27–34. [Google Scholar]
- Ghahramani, Z.; Beal, M.J. Variational Inference for Bayesian Mixtures of Factor Analysers. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2000; pp. 449–455. [Google Scholar]
- Peñalver, A.; Escolano, F.; Sáez, J.M. Learning gaussian mixture models with entropy-based criteria. IEEE Trans. Neural Netw. 2009, 20, 1756–1772. [Google Scholar] [CrossRef] [PubMed]
- Leonenko, N.; Pronzato, L. A class of rényi information estimators for multi-dimensional densities. Ann. Stat. 2008, 36, 2153–2182. [Google Scholar] [CrossRef]
- Constantinopoulos, C.; Likas, A. Unsupervised Learning of Gaussian Mixtures Based on Variational Component Splitting. IEEE Trans. Neural Netw. 2007, 18, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Dellaportas, P.; Papageorgiou, I. Multivariate mixtures of normals with unknown number of components. Stat. Comput. 2006, 16, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Mardia, K.; Kent, J.; Bibby, J. Multivariate analysis. In Probability and Mathematical Statistics; Academic Press Inc.: Cambridge, MA, USA, 1979. [Google Scholar]
- Greene, W.H. Econometric Analysis; Pearson Education India: Delhi, India, 2003. [Google Scholar]
- Carnero, B.S.; Seriñán, P.R.; García, M.M. El Modelo Klein I y los ciclos económicos [Klein’s Model I and economic cycles]. Rev. Econ. Cycles 2002, 4. Available online: https://www.researchgate.net/profile/Basilio-Sanz/publication/24121320_El_Modelo_Klein_I_y_los_Ciclos_Economicos/links/02e7e52bc9ddd79aa2000000/El-Modelo-Klein-I-y-los-Ciclos-Economicos.pdf (accessed on 24 March 2021).
Size | GM | PM | AGG | CA | CA Clustering Error | ||
---|---|---|---|---|---|---|---|
Aggregate | % | ||||||
2 | 76,003.15 | 76,069.52 | 76,200.78 | 76,601.07 | 82,421.45 | 75,964.97 | 1.65 |
4 | 144,038.25 | 148,422.05 | 150,889.29 | 152,474.46 | 153,744.05 | 144,130.05 | 0.77 |
6 | 238,407.47 | 244,234.13 | 247,418.12 | 248,074.44 | 249,785.10 | 238,794.03 | 0.67 |
8 | 332,163.59 | 338,568.06 | 343,189.90 | 344,504.72 | 349,888.61 | 333,404.96 | 0.39 |
Size | Number of Clusters | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
2 | 83,795.08 | 78,139.16 | 76,307.94 | 75,408.18 |
4 | 136,575.21 | 136,703.96 | 135,996.17 | 132,493.36 |
6 | 255,276.91 | 256,088.06 | 251,367.12 | 249,979.87 |
8 | 348,972.97 | 351,896.28 | 341,170.68 | 331,409.30 |
Number of Clusters | AICk-means | AICCA |
---|---|---|
1 | 2004.415 | 2004.415 |
2 | 1856.893 | 1855.913 |
3 | 1811.696 | 1638.756 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Sanjaime, R.; González, M.; Peñalver, A.; López-Espín, J.J. Estimating Simultaneous Equation Models through an Entropy-Based Incremental Variational Bayes Learning Algorithm. Entropy 2021, 23, 384. https://doi.org/10.3390/e23040384
Hernández-Sanjaime R, González M, Peñalver A, López-Espín JJ. Estimating Simultaneous Equation Models through an Entropy-Based Incremental Variational Bayes Learning Algorithm. Entropy. 2021; 23(4):384. https://doi.org/10.3390/e23040384
Chicago/Turabian StyleHernández-Sanjaime, Rocío, Martín González, Antonio Peñalver, and Jose J. López-Espín. 2021. "Estimating Simultaneous Equation Models through an Entropy-Based Incremental Variational Bayes Learning Algorithm" Entropy 23, no. 4: 384. https://doi.org/10.3390/e23040384
APA StyleHernández-Sanjaime, R., González, M., Peñalver, A., & López-Espín, J. J. (2021). Estimating Simultaneous Equation Models through an Entropy-Based Incremental Variational Bayes Learning Algorithm. Entropy, 23(4), 384. https://doi.org/10.3390/e23040384