Information Theory in Molecular Evolution: From Models to Structures and Dynamics
Funding
Acknowledgments
Conflicts of Interest
References
- Fisher, R.A. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Trans. R. Soc. Edinb. 1919, 52, 399–433. [Google Scholar] [CrossRef] [Green Version]
- Grandy, W., Jr.; Milonni, P. Physics and Probability: Essays in Honor of Edwin T. Jaynes; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar] [CrossRef]
- Weigt, M.; White, R.A.; Szurmant, H.; Hoch, J.A.; Hwa, T. Identification of direct residue contacts in protein–protein interaction by message passing. Proc. Natl. Acad. Sci. USA 2009, 106, 67–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morcos, F.; Pagnani, A.; Lunt, B.; Bertolino, A.; Marks, D.S.; Sander, C.; Zecchina, R.; Onuchic, J.N.; Hwa, T.; Weigt, M. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. USA 2011, 108, E1293–E1301. [Google Scholar] [CrossRef] [Green Version]
- Bitbol, A.F. Inferring interaction partners from protein sequences using mutual information. PLoS Comput. Biol. 2018, 14, e1006401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmier, G.; Weigt, M.; Bitbol, A.F. Phylogenetic correlations can suffice to infer protein partners from sequences. PLoS Comput. Biol. 2019, 15, e1007179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hockenberry, A.J.; Wilke, C.O. Phylogenetic Weighting Does Little to Improve the Accuracy of Evolutionary Coupling Analyses. Entropy 2019, 21, 1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez Horta, E.; Barrat-Charlaix, P.; Weigt, M. Toward Inferring Potts Models for Phylogenetically Correlated Sequence Data. Entropy 2019, 21, 1090. [Google Scholar] [CrossRef] [Green Version]
- Malinverni, D.; Barducci, A. Coevolutionary Analysis of Protein Subfamilies by Sequence Reweighting. Entropy 2019, 21, 1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Zhou, H.; Wang, X.; Tao, P. Dynamical Behavior of β-Lactamases and Penicillin-Binding Proteins in Different Functional States and Its Potential Role in Evolution. Entropy 2019, 21, 1130. [Google Scholar] [CrossRef] [Green Version]
- Campitelli, P.; Ozkan, S.B. Allostery and Epistasis: Emergent Properties of Anisotropic Networks. Entropy 2020, 22, 667. [Google Scholar] [CrossRef] [PubMed]
- Cadet, X.F.; Dehak, R.; Chin, S.P.; Bessafi, M. Non-Linear Dynamics Analysis of Protein Sequences. Application to CYP450. Entropy 2019, 21, 852. [Google Scholar] [CrossRef] [Green Version]
- Sinner, C.; Ziegler, C.; Jung, Y.H.; Jiang, X.; Morcos, F. ELIHKSIR Web Server: Evolutionary Links Inferred for Histidine Kinase Sensors Interacting with Response Regulators. Entropy 2021, 23, 170. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morcos, F. Information Theory in Molecular Evolution: From Models to Structures and Dynamics. Entropy 2021, 23, 482. https://doi.org/10.3390/e23040482
Morcos F. Information Theory in Molecular Evolution: From Models to Structures and Dynamics. Entropy. 2021; 23(4):482. https://doi.org/10.3390/e23040482
Chicago/Turabian StyleMorcos, Faruck. 2021. "Information Theory in Molecular Evolution: From Models to Structures and Dynamics" Entropy 23, no. 4: 482. https://doi.org/10.3390/e23040482
APA StyleMorcos, F. (2021). Information Theory in Molecular Evolution: From Models to Structures and Dynamics. Entropy, 23(4), 482. https://doi.org/10.3390/e23040482