Message Passing and Metabolism
Abstract
:1. Introduction
2. Probabilistic Dynamics
2.1. Free Energy and Generative Models
2.2. Master Equations
2.3. Mean-Field Models
2.4. Graphical Models and Message Passing
3. Biochemical Networks
3.1. The Law of Mass Action
3.2. Reaction Networks
3.3. Enzymes
3.4. Enzymatic Inference
4. Metabolism
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Ao, P. Global view of bionetwork dynamics: Adaptive landscape. J. Genet. Genom. 2009, 36, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Klein, B.; Holmér, L.; Smith, K.M.; Johnson, M.M.; Swain, A.; Stolp, L.; Teufel, A.I.; Kleppe, A.S. Resilience and evolvability of protein-protein interaction networks. bioRxiv 2020. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proulx, S.R.; Promislow, D.E.L.; Phillips, P.C. Network thinking in ecology and evolution. Trends Ecol. Evol. 2005, 20, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Mardinoglu, A.; Nielsen, J. Systems medicine and metabolic modelling. J. Intern. Med. 2012, 271, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Winn, J.; Bishop, C.M. Variational message passing. J. Mach. Learn. Res. 2005, 6, 661–694. [Google Scholar]
- Dauwels, J. On variational message passing on factor graphs. In Proceedings of the 2007 IEEE International Symposium on Information Theory, ISIT 2007, Nice, France, 24–29 June 2007; pp. 2546–2550. [Google Scholar]
- Loeliger, H.A.; Dauwels, J.; Hu, J.; Korl, S.; Ping, L.; Kschischang, F.R. The Factor Graph Approach to Model-Based Signal Processing. Proc. IEEE 2007, 95, 1295–1322. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active Inference: A Process Theory. Neural Comput. 2017, 29, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.; Mattout, J.; Trujillo-Barreto, N.; Ashburner, J.; Penny, W. Variational free energy and the Laplace approximation. NeuroImage 2007, 34, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. A free energy principle for a particular physics. arXiv 2019, arXiv:1906.10184. [Google Scholar]
- Parr, T.; Markovic, D.; Kiebel, S.J.; Friston, K.J. Neuronal message passing using Mean-field, Bethe, and Marginal approximations. Sci. Rep. 2019, 9, 1889. [Google Scholar] [CrossRef] [PubMed]
- George, D.; Hawkins, J. Towards a Mathematical Theory of Cortical Micro-circuits. PLoS Comput. Biol. 2009, 5, e1000532. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. Life as we know it. J. R. Soc. Interface 2013, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltieri, M.; Buckley, C.L.; Bruineberg, J. Predictions in the eye of the beholder: An active inference account of Watt governors. In Proceedings of the 2020 Conference on Artificial Life, Online. 13–18 July 2020; pp. 121–129. [Google Scholar]
- Risken, H. Fokker-Planck Equation. In The Fokker-Planck Equation: Methods of Solution and Applications; Springer: Berlin/Heidelberg, Germany, 1996; pp. 63–95. [Google Scholar] [CrossRef]
- Koudahl, M.T.; de Vries, B. A Worked Example of Fokker-Planck-Based Active Inference. In Proceedings of the International Workshop on Active Inference, Ghent, Belgium, 14 September 2020; pp. 28–34. [Google Scholar]
- Penny, W.D.; Stephan, K.E.; Daunizeau, J.; Rosa, M.J.; Friston, K.J.; Schofield, T.M.; Leff, A.P. Comparing Families of Dynamic Causal Models. PLoS Comput. Biol. 2010, 6, e1000709. [Google Scholar] [CrossRef] [Green Version]
- Hohwy, J. The Self-Evidencing Brain. Noûs 2016, 50, 259–285. [Google Scholar] [CrossRef]
- Beal, M.J. Variational Algorithms for Approximate Bayesian Inference; University of London: London, UK, 2003. [Google Scholar]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, C.L.; Kim, C.S.; McGregor, S.; Seth, A.K. The free energy principle for action and perception: A mathematical review. J. Math. Psychol. 2017, 81, 55–79. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Parr, T.; Costa, L.D.; Friston, K. Markov blankets, information geometry and stochastic thermodynamics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190159. [Google Scholar] [CrossRef] [Green Version]
- Toral, R.; Colet, P. Stochastic Numerical Methods: An Introduction for Students and Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Van KAMPEN, N.G. The Expansion of the Master Equation. Adv. Chem. Phys. 1976, 245–309. [Google Scholar] [CrossRef]
- Ao, P.; Chen, T.-Q.; Shi, J.-H. Dynamical Decomposition of Markov Processes without Detailed Balance. Chin. Phys. Lett. 2013, 30, 070201. [Google Scholar] [CrossRef]
- Friston, K.; Ao, P. Free energy, value, and attractors. Comput Math. Methods Med. 2012, 2012, 937860. [Google Scholar] [CrossRef] [PubMed]
- Weiss, P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Appl. 1907, 6, 661–690. [Google Scholar] [CrossRef]
- Parr, T.; Sajid, N.; Friston, K.J. Modules or Mean-Fields? Entropy 2020, 22, 552. [Google Scholar] [CrossRef]
- Kadanoff, L.P. More is the same; phase transitions and mean field theories. J. Stat. Phys. 2009, 137, 777–797. [Google Scholar] [CrossRef]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San Fransisco, CA, USA, 1988. [Google Scholar]
- Forney, G.D. Codes on graphs: Normal realizations. IEEE Trans. Inf. Theory 2001, 47, 520–548. [Google Scholar] [CrossRef]
- van’t Hoff, J.H. Die Grenzebene, ein Beitrag zur Kenntniss der Esterbildung. Ber. Der Dtsch. Chem. Ges. 1877, 10, 669–678. [Google Scholar] [CrossRef]
- Guldberg, C.M.; Waage, P. Ueber die chemische Affinität. § 1. Einleitung. J. Für Prakt. Chem. 1879, 19, 69–114. [Google Scholar] [CrossRef]
- McLean, F.C. Application of The Law of Chemical Equilibrium (Law of Mass Action) to Biological Problems. Physiol. Rev. 1938, 18, 495–523. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, D.T. A rigorous derivation of the chemical master equation. Phys. A Stat. Mech. Its Appl. 1992, 188, 404–425. [Google Scholar] [CrossRef]
- Horn, F.; Jackson, R. General mass action kinetics. Arch. Ration. Mech. Anal. 1972, 47, 81–116. [Google Scholar] [CrossRef]
- Michaelis, L.; Menten, M.L. Die kinetik der invertinwirkung. Biochem. Z 1913, 49, 352. [Google Scholar]
- Briggs, G.E.; Haldane, J.B. A Note on the Kinetics of Enzyme Action. Biochem. J. 1925, 19, 338–339. [Google Scholar] [CrossRef] [Green Version]
- Gorban, A.N. Model reduction in chemical dynamics: Slow invariant manifolds, singular perturbations, thermodynamic estimates, and analysis of reaction graph. Curr. Opin. Chem. Eng. 2018, 21, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Schilling, C.H.; Letscher, D.; Palsson, B.Ø. Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective. J. Theor. Biol. 2000, 203, 229–248. [Google Scholar] [CrossRef] [Green Version]
- Price, N.D.; Reed, J.L.; Papin, J.A.; Wiback, S.J.; Palsson, B.O. Network-based analysis of metabolic regulation in the human red blood cell. J. Theor. Biol. 2003, 225, 185–194. [Google Scholar] [CrossRef]
- Bastos, A.M.; Usrey, W.M.; Adams, R.A.; Mangun, G.R.; Fries, P.; Friston, K.J. Canonical microcircuits for predictive coding. Neuron 2012, 76, 695–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friston, K.; Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1211. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.P.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2, 79–87. [Google Scholar] [CrossRef]
- Shipp, S. Neural Elements for Predictive Coding. Front. Psychol. 2016, 7, 1792. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.V.; Laughlin, S.B.; Dubs, A.; Horridge, G.A. Predictive coding: A fresh view of inhibition in the retina. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 1982, 216, 427–459. [Google Scholar] [CrossRef]
- Friston, K.J.; Wiese, W.; Hobson, J.A. Sentience and the Origins of Consciousness: From Cartesian Duality to Markovian Monism. Entropy 2020, 22, 516. [Google Scholar] [CrossRef]
- Fuster, J.M. Upper processing stages of the perception–action cycle. Trends Cogn. Sci. 2004, 8, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Lunt, S.Y.; Vander Heiden, M.G. Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27, 441–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Monakow, C. Die Lokalisation im Grosshirn und der Abbau der Funktion Durch Kortikale Herde; JF Bergmann: Wiesbaden, Germany, 1914. [Google Scholar]
- Carrera, E.; Tononi, G. Diaschisis: Past, present, future. Brain 2014, 137, 2408–2422. [Google Scholar] [CrossRef] [Green Version]
- Price, C.; Warburton, E.; Moore, C.; Frackowiak, R.; Friston, K. Dynamic diaschisis: Anatomically remote and context-sensitive human brain lesions. J. Cogn. Neurosci. 2001, 13, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Parr, T.; Friston, K.J. The Computational Anatomy of Visual Neglect. Cereb. Cortex 2017, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhir, S.; Tarasenko, M.; Napoli, E.; Giulivi, C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front. Psychiatry 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Hazell, A.S.; Todd, K.G.; Butterworth, R.F. Mechanisms of Neuronal Cell Death in Wernicke’s Encephalopathy. Metab. Brain Dis. 1998, 13, 97–122. [Google Scholar] [CrossRef]
- Zubaran, C.; Fernandes, J.G.; Rodnight, R. Wernicke-Korsakoff syndrome. Postgrad. Med. J. 1997, 73, 27. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.J.; Fagerholm, E.D.; Zarghami, T.S.; Parr, T.; Hipólito, I.; Magrou, L.; Razi, A. Parcels and particles: Markov blankets in the brain. Netw. Neurosci. 2020, 1–76. [Google Scholar] [CrossRef]
- Klein, B.; Hoel, E. The Emergence of Informative Higher Scales in Complex Networks. Complexity 2020, 2020, 8932526. [Google Scholar] [CrossRef]
- Parr, T.; Friston, K.J. Disconnection and Diaschisis: Active Inference in Neuropsychology. In The Philosophy and Science of Predictive Processing; Bloomsbury Publishing: London, UK, 2020; p. 171. [Google Scholar]
- Geschwind, N. Disconnexion syndromes in animals and man. II. Brain J. Neurol. 1965, 88, 585. [Google Scholar] [CrossRef] [Green Version]
- Geschwind, N. Disconnexion syndromes in animals and man. I. Brain 1965, 88, 237. [Google Scholar] [CrossRef] [Green Version]
- Parr, T.; Limanowski, J.; Rawji, V.; Friston, K. The computational neurology of movement under active inference. Brain 2021. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Stephan, K.E.; Montague, R.; Dolan, R.J. Computational psychiatry: The brain as a phantastic organ. Lancet Psychiatry 2014, 1, 148–158. [Google Scholar] [CrossRef]
- Adams, R.; Stephan, K.; Brown, H.; Frith, C.; Friston, K. The Computational Anatomy of Psychosis. Front. Psychiatry 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wald, A. An Essentially Complete Class of Admissible Decision Functions. Ann. Math. Stat. 1947, 549–555. [Google Scholar] [CrossRef]
- Daunizeau, J.; den Ouden, H.E.M.; Pessiglione, M.; Kiebel, S.J.; Stephan, K.E.; Friston, K.J. Observing the observer (I): Meta-bayesian models of learning and decision-making. PLoS ONE 2010, 5, e15554. [Google Scholar] [CrossRef] [PubMed]
- Schwartenbeck, P.; FitzGerald, T.H.B.; Mathys, C.; Dolan, R.; Wurst, F.; Kronbichler, M.; Friston, K. Optimal inference with suboptimal models: Addiction and active Bayesian inference. Med. Hypotheses 2015, 84, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, A.V. The Combinations of Haemoglobin with Oxygen and with Carbon Monoxide. I. Biochem. J. 1913, 7, 471–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefan, M.I.; Le Novère, N. Cooperative binding. PLoS Comput. Biol. 2013, 9, e1003106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isomura, T.; Friston, K. In vitro neural networks minimise variational free energy. Sci. Rep. 2018, 8, 16926. [Google Scholar] [CrossRef] [Green Version]
- Gunji, Y.-P.; Shinohara, S.; Haruna, T.; Basios, V. Inverse Bayesian inference as a key of consciousness featuring a macroscopic quantum logical structure. Biosystems 2017, 152, 44–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunji, Y.-P.; Murakami, H.; Tomaru, T.; Basios, V. Inverse Bayesian inference in swarming behaviour of soldier crabs. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170370. [Google Scholar] [CrossRef]
- Friston, K.; Parr, T.; Zeidman, P.; Razi, A.; Flandin, G.; Daunizeau, J.; Hulme, O.; Billig, A.; Litvak, V.; Moran, R.; et al. Dynamic causal modelling of COVID-19 [version 2; peer review: 2 approved]. Wellcome Open Res. 2020, 5. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G.; Walker, G.T. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. AContain. Pap. A Math. Phys. Character 1927, 115, 700–721. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, A.E.; Lindsay, K.A.; Rosenberg, J.R. Increased Computational Accuracy in Multi-Compartmental Cable Models by a Novel Approach for Precise Point Process Localization. J. Comput. Neurosci. 2005, 19, 21–38. [Google Scholar] [CrossRef] [PubMed]
- De Boer, R.J.; Perelson, A.S.; Kevrekidis, I.G. Immune network behavior—I. From stationary states to limit cycle oscillations. Bull. Math. Biol. 1993, 55, 745–780. [Google Scholar] [CrossRef]
- Parr, T.; Bhat, A.; Zeidman, P.; Goel, A.; Billig, A.J.; Moran, R.; Friston, K.J. Dynamic causal modelling of immune heterogeneity. arXiv 2020, arXiv:2009.08411. [Google Scholar]
- Volterra, V. Variations and Fluctuations of the Number of Individuals in Animal Species living together. ICES J. Mar. Sci. 1928, 3, 3–51. [Google Scholar] [CrossRef]
- Gerlowski, L.E.; Jain, R.K. Physiologically Based Pharmacokinetic Modeling: Principles and Applications. J. Pharm. Sci. 1983, 72, 1103–1127. [Google Scholar] [CrossRef] [PubMed]
- Tramontana, F. Economics as a compartmental system: A simple macroeconomic example. Int. Rev. Econ. 2010, 57, 347–360. [Google Scholar] [CrossRef]
- Sarmiento, J.L.; Toggweiler, J.R. A new model for the role of the oceans in determining atmospheric P CO2. Nature 1984, 308, 621–624. [Google Scholar] [CrossRef]
- Jahnke, T.; Huisinga, W. Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 2007, 54, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahnke, T. On reduced models for the chemical master equation. Multiscale Model. Simul. 2011, 9, 1646–1676. [Google Scholar] [CrossRef] [Green Version]
Rate Constant | Function of α |
---|---|
Rate Constant | Function of α |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parr, T. Message Passing and Metabolism. Entropy 2021, 23, 606. https://doi.org/10.3390/e23050606
Parr T. Message Passing and Metabolism. Entropy. 2021; 23(5):606. https://doi.org/10.3390/e23050606
Chicago/Turabian StyleParr, Thomas. 2021. "Message Passing and Metabolism" Entropy 23, no. 5: 606. https://doi.org/10.3390/e23050606
APA StyleParr, T. (2021). Message Passing and Metabolism. Entropy, 23(5), 606. https://doi.org/10.3390/e23050606