Interpolating between Positive and Completely Positive Maps: A New Hierarchy of Entangled States
Abstract
:1. Introduction
2. Partially Contractive Maps
- 1.
- Φ is PTP iff it is 1-partially contractive;
- 2.
- Φ is CPTP iff it is -partially contractive.
3. Qubit Maps
4. Partial Contractivity vs. Schwarz Qubit Maps
5. Partial Contractions vs. Quantum Entanglement
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Størmer, E. Positive Linear Maps of Operator Algebras; Springer: Berlin, Germany, 2013. [Google Scholar]
- Størmer, E. Positive linear maps of operator algebras. Acta Math. 1963, 110, 233–278. [Google Scholar] [CrossRef]
- Paulsen, V. Completely Bounded Maps and Operator Algebras; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Wilde, M.M. Quantum Information Theory; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hayashi, M. Quantum Information: An Introduction; Springer: Berlin, Germany, 2006. [Google Scholar]
- Lindblad, G. Completely positive maps and entropy inequalities. Commun. Math. Phys. 1975, 40, 147. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef] [Green Version]
- Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Chruściński, D.; Sarbicki, G. Entanglement witnesses: Construction, analysis and classification. J. Phys. A Math. Theor. 2014, 47, 483001. [Google Scholar] [CrossRef]
- Bengtsson, I.; Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kossakowski, A. On necessary and sufficient conditions for a generator of a quantum dynamical semi-group. Bull. Acad. Polon. Sci. Sér. Math. Astr. Phys 1972, 20, 1021–1025. [Google Scholar]
- Chakraborty, S. Generalized formalism for information backflow in assessing Markovianity and its equivalence to divisibility. Phys. Rev. A 2018, 97, 032130. [Google Scholar] [CrossRef] [Green Version]
- Terhal, B.M.; Horodecki, P. Schmidt number for density matrices. Phys. Rev. A 2000, 61, 040301. [Google Scholar] [CrossRef] [Green Version]
- Ruskai, M.B.; Szarek, S.; Werner, E. An analysis of completely-positive trace-preserving maps on M2. Linear Algebra Appl. 2002, 347, 159–187. [Google Scholar] [CrossRef] [Green Version]
- Arveson, W. Subalgebra of C*-algebras. Acta Math. 1969, 123, 141. [Google Scholar] [CrossRef]
- Heinosaari, T.; Jivulescu, M.A.; Reeb, D.; Wolf, M.M. Extending quantum operations. J. Math. Phys. 2012, 53, 102208. [Google Scholar] [CrossRef] [Green Version]
- Jenčová, A. Generalized channels: Channels for convex subsets of the state space. J. Math. Phys. 2012, 53, 012201. [Google Scholar] [CrossRef] [Green Version]
- Alberti, P.M.; Uhlmann, A. A Problem Relating to Positive Linear Maps on Matrix Algebras. Rep. Math. Phys. 1980, 18, 163–176. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chruściński, D.; Sarbicki, G.; vom Ende, F. On the Alberti-Uhlmann Condition for Unital Channels. Quantum 2020, 4, 360. [Google Scholar] [CrossRef]
- Dall’Arno, M.; Buscemi, F.; Scarani, V. Extension of the Alberti-Ulhmann criterion beyond qubit dichotomies. Quantum 2020, 4, 233. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Chruściński, D. Information flow versus divisibility for qubit evolution. Phys. Rev. A 2019, 99, 042105. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.D. Completely Positive Linear Maps on Complex Matrices. Linear Algebra Appl. 1975, 10, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, G. Positive Definite Matrices and Sylvester’s Criterion. Am. Math. Mon. 1991, 98, 44–46. [Google Scholar] [CrossRef]
- Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Kadison, R.V.; Ringrose, J. Fundamentals of the Theory of Operator Algebras; Academic Press: New York, NY, USA, 1956. [Google Scholar]
- Kadison, R.V. A generalised Schwarz inequality and algebraic invariants for operator algebras. Ann. Math. 1952, 56, 494–503. [Google Scholar] [CrossRef]
- Chruściński, D.; Mukhamedov, F.; Hajji, M.A. On Kadison-Schwarz Approximation to Positive Maps. Open Sys. Inf. Dyn. 2020, 27, 2050016. [Google Scholar] [CrossRef]
- Eisert, J.; Briegel, H.J. Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A 2001, 64, 022306. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Fan, H. A generalization of Schmidt number for multipartite states. Int. J. Quantum Inf. 2015, 13, 1550025. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yang, Y.; Tang, W.-S. Schmidt number of bipartite and multipartite states under local projections. Quantum Inf. Process. 2017, 16, 75. [Google Scholar]
- Wang, Y.; Liu, T.; Ma, R. Schmidt Number Entanglement Measure for Multipartite k-nonseparable States. Int.J. Theor. Phys. 2020, 59, 983–990. [Google Scholar] [CrossRef]
- Szarek, S.J.; Werner, E.; Życzkowski, K. How often is a random quantum state k-entangled? J. Phys. A Math. Theor. 2011, 44, 045303. [Google Scholar] [CrossRef]
- Choi, M.D. Positive linear maps on C*-algebras. Can. J. Math. 1972, 24, 520–529. [Google Scholar] [CrossRef]
- Chruściński, D.; Kossakowski, A. Spectral Conditions for Positive Maps. Commun. Math. Phys. 2009, 290, 1051. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siudzińska, K.; Chakraborty, S.; Chruściński, D. Interpolating between Positive and Completely Positive Maps: A New Hierarchy of Entangled States. Entropy 2021, 23, 625. https://doi.org/10.3390/e23050625
Siudzińska K, Chakraborty S, Chruściński D. Interpolating between Positive and Completely Positive Maps: A New Hierarchy of Entangled States. Entropy. 2021; 23(5):625. https://doi.org/10.3390/e23050625
Chicago/Turabian StyleSiudzińska, Katarzyna, Sagnik Chakraborty, and Dariusz Chruściński. 2021. "Interpolating between Positive and Completely Positive Maps: A New Hierarchy of Entangled States" Entropy 23, no. 5: 625. https://doi.org/10.3390/e23050625
APA StyleSiudzińska, K., Chakraborty, S., & Chruściński, D. (2021). Interpolating between Positive and Completely Positive Maps: A New Hierarchy of Entangled States. Entropy, 23(5), 625. https://doi.org/10.3390/e23050625