Local Fractal Connections to Characterize the Spatial Processes of Deforestation in the Ecuadorian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Spatial Metrics and Spatial Processes of Deforested Patches
2.4. LCFD Calculation of the Deforestation Process
2.5. LCFD Thresholding and Mapping
2.5.1. Concentration-Area (CA) and Wavelet -Transform Modulus -Maxima (WTMM) Methods
2.5.2. K-Means
3. Results
3.1. Cumulative Evolution of Deforestation
3.2. The Evolution of Local Fractal Connections
3.3. LCFD Thresholds with CA-Wavelet and K-Means
4. Discussion
4.1. Major Spatial Attributes of Deforestation Processes
4.2. Improvement of Fractal Characteristics through the Local Connections Approach
5. Conclusions
- LCFD connections can be understood as a spatial index with which characterize the intricate connectivity of deforestation patterns.
- CA-wavelet and K-means show consistent segmentation algorithms for the LCFD of the deforestation process, which is essential for mapping interpretation of deforestation complexity in land management programs.
- LCFD mapping can be used to define spatial priority settings to tackle deforestation expansion in the Amazon region.
- This information can detect degradations hotspots based on complex relationships identified from LULC maps.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 2016, 12, 94004. [Google Scholar] [CrossRef]
- Murad, C.A.; Pearse, J. Landsat study of deforestation in the Amazon region of Colombia: Departments of Caquetá and Putumayo. Remote Sens. Appl. Soc. Environ. 2018, 11, 161–171. [Google Scholar] [CrossRef]
- Silva Junior, C.H.L.; Pessôa, A.C.M.; Carvalho, N.S.; Reis, J.B.C.; Anderson, L.O.; Aragão, L.E.O.C. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 2021, 5, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Armenteras, D.; Espelta, J.M.; Rodríguez, N.; Retana, J. Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980–2010). Glob. Environ. Chang. 2017, 46, 139–147. [Google Scholar] [CrossRef]
- Etter, A.; McAlpine, C.; Wilson, K.; Phinn, S.; Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 2006, 114, 369–386. [Google Scholar] [CrossRef]
- Caballero Espejo, J.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sens. 2018, 10, 1903. [Google Scholar] [CrossRef] [Green Version]
- Viteri-Salazar, O.; Toledo, L. The expansion of the agricultural frontier in the northern Amazon region of Ecuador, 2000–2011: Process, causes, and impact. Land Use Policy 2020, 99, 104986. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science (80-. ) 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, MA, USA, 1995; ISBN 0521474620. [Google Scholar]
- Sierra, R. Patrones y Factores de Deforestación en el Ecuador Continental, 1990–2010. Y un Acercamiento a los Próximos 10 Años; Conservación Internacional Ecuador y Forest Trends: Quito, Ecuador, 2013. [Google Scholar]
- Mena, C.F.; Bilsborrow, R.E.; McClain, M.E. Socioeconomic Drivers of Deforestation in the Northern Ecuadorian Amazon. Environ. Manage. 2006, 37, 802–815. [Google Scholar] [CrossRef]
- Guevara Sanginés, A.; de la Torre Aranda, J.; Rivera Pelcastre, R. Pobreza y Deforestación: Un Enfoque de Acervos; Universidad Iberoamericana- Instituto Nacional de Ecología: Mexico City, Mexico, 2001. [Google Scholar]
- Andronache, I.; Marin, M.; Fischer, R.; Ahammer, H.; Radulovic, M.; Ciobotaru, A.-M.; Jelinek, H.F.; Di Ieva, A.; Pintilii, R.-D.; Drăghici, C.-C.; et al. Dynamics of Forest Fragmentation and Connectivity Using Particle and Fractal Analysis. Sci. Rep. 2019, 9, 12228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Huang, Z.; Zhen, Q.; Southworth, J.; Perz, S. Fractally deforested landscape: Pattern and process in a tri-national Amazon frontier. Appl. Geogr. 2014, 52, 204–211. [Google Scholar] [CrossRef]
- Diaconu, D.C. Use of Fractal Analysis in the Evaluation of Deforested Areas in Romania. In Advances in Forest Management under Global Change; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-83968-307-7. [Google Scholar]
- Andronache, I.; Fensholt, R.; Ahammer, H.; Ciobotaru, A.-M.; Pintilii, R.-D.; Peptenatu, D.; Drăghici, C.-C.; Diaconu, D.; Radulović, M.; Pulighe, G.; et al. Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis. Forests 2017, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Cantin, G.; Verdière, N. Networks of forest ecosystems: Mathematical modeling of their biotic pump mechanism and resilience to certain patch deforestation. Ecol. Complex. 2020, 43, 100850. [Google Scholar] [CrossRef]
- Swaid, B.; Bilotta, E.; Pantano, P.; Lucente, R. Thresholding urban connectivity by local connected fractal dimensions and lacunarity analyses. In Proceedings of the Late Breaking Proceedings of the European Conference on Artificial Life 2015, York, UK, 20–24 July 2015; pp. 15–16. [Google Scholar]
- Manera, M.; Giari, L.; De Pasquale, J.A.; Sayyaf Dezfuli, B. Local connected fractal dimension analysis in gill of fish experimentally exposed to toxicants. Aquat. Toxicol. 2016, 175, 12–19. [Google Scholar] [CrossRef]
- Souza, C.; Azevedo, T. MapBiomas General Handbook; MapBiomas: São Paulo, Brazil, 2017; pp. 1–23. [Google Scholar]
- Project MapBiomas. MapBiomas; Collect. 4.0 Amaz. Biome L. Cover Use Map Ser. 2020.
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A. Raster Package in R. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 20 December 2020).
- Frohn, R.C.; Hao, Y. Landscape metric performance in analyzing two decades of deforestation in the Amazon Basin of Rondonia, Brazil. Remote Sens. Environ. 2006, 100, 237–251. [Google Scholar] [CrossRef]
- de Barros Ferraz, S.F.; Vettorazzi, C.A.; Theobald, D.M.; Ballester, M.V.R. Landscape dynamics of Amazonian deforestation between 1984 and 2002 in central Rondônia, Brazil: Assessment and future scenarios. For. Ecol. Manag. 2005, 204, 69–85. [Google Scholar] [CrossRef]
- Imbernon, J.; Branthomme, A. Characterization of landscape patterns of deforestation in tropical rain forests. Int. J. Remote Sens. 2001, 22, 1753–1765. [Google Scholar] [CrossRef]
- Mena, J.L. Respuestas de los murciélagos a la fragmentación del bosque en Pozuzo, Perú. Rev. Peru. Biol. 2010, 17, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Bonilla-Bedoya, S.; Molina, J.R.; Macedo-Pezzopane, J.E.; Herrera-Machuca, M.A. Fragmentation patterns and systematic transitions of the forested landscape in the upper Amazon region, Ecuador 1990–2008. J. For. Res. 2014, 25, 301–309. [Google Scholar] [CrossRef]
- Armenteras, D.; González, T.M.; Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 2013, 159, 73–79. [Google Scholar] [CrossRef]
- Cabral, A.I.R.; Saito, C.; Pereira, H.; Laques, A.E. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Appl. Geogr. 2018, 100, 101–115. [Google Scholar] [CrossRef]
- Yanai, A.M.; de Alencastro Graça, P.M.L.; Escada, M.I.S.; Ziccardi, L.G.; Fearnside, P.M. Deforestation dynamics in Brazil’s Amazonian settlements: Effects of land-tenure concentration. J. Environ. Manag. 2020, 268, 110555. [Google Scholar] [CrossRef]
- Montibeller, B.; Kmoch, A.; Virro, H.; Mander, Ü.; Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 2020, 10, 5803. [Google Scholar] [CrossRef]
- Pan, W.K.Y.; Walsh, S.J.; Bilsborrow, R.E.; Frizzelle, B.G.; Erlien, C.M.; Baquero, F. Farm-level models of spatial patterns of land use and land cover dynamics in the Ecuadorian Amazon. Agric. Ecosyst. Environ. 2004, 101, 117–134. [Google Scholar] [CrossRef]
- Sun, J.; Southworth, J. Indicating structural connectivity in Amazonian rainforests from 1986 to 2010 using morphological image processing analysis. Int. J. Remote Sens. 2013, 34, 5187–5200. [Google Scholar] [CrossRef]
- Rosa, I.M.D.; Gabriel, C.; Carreiras, J.M.B. Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon. Reg. Environ. Chang. 2017, 17, 1687–1699. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, B.R.; Carvalho-Ribeiro, S.M.; Maia-Barbosa, P.M. A multiscale analysis of land use dynamics in the buffer zone of Rio Doce State Park, Minas Gerais, Brazil. J. Environ. Plan. Manag. 2020, 63, 935–957. [Google Scholar] [CrossRef]
- Garcia, A.S.; Ballester, M.V.R. Land cover and land use changes in a Brazilian Cerrado landscape: Drivers, processes, and patterns. J. Land Use Sci. 2016, 11, 538–559. [Google Scholar] [CrossRef]
- Slattery, Z.; Fenner, R. Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation. Sustainability 2021, 13, 3246. [Google Scholar] [CrossRef]
- Olsoy, P.J.; Zeller, K.A.; Hicke, J.A.; Quigley, H.B.; Rabinowitz, A.R.; Thornton, D.H. Quantifying the effects of deforestation and fragmentation on a range-wide conservation plan for jaguars. Biol. Conserv. 2016, 203, 8–16. [Google Scholar] [CrossRef]
- Bianchi, C.A.; Haig, S.M. Deforestation Trends of Tropical Dry Forests in Central Brazil. Biotropica 2013, 45, 395–400. [Google Scholar] [CrossRef]
- Landini, G.; Murray, P.I.; Misson, G.P. Local connected fractal dimensions and lacunarity analyses of 60 degrees fluorescein angiograms. Investig. Ophthalmol. Vis. Sci. 1995, 36, 2749–2755. Available online: https://iovs.arvojournals.org/article.aspx?articleid=2179971 (accessed on 14 June 2021).
- Karperien, A. Fraclac for ImageJ; Charles Sturt University: Bathurst, Australia, 2013. [Google Scholar]
- Rasband, W.S. ImageJ; 1.46r.; US National Institutes of Health: Bethesda, MD, USA, 1997.
- Urgilez-Clavijo, A.; de la Riva, J.; Rivas-Tabares, D.A.; Tarquis, A.M. Linking deforestation patterns to soil types: A multifractal approach. Eur. J. Soil Sci. 2021, 72, 635–655. [Google Scholar] [CrossRef]
- Martín-Sotoca, J.J.; Saa-Requejo, A.; Grau, J.B.; Tarquis, A.M. New segmentation method based on fractal properties using singularity maps. Geoderma 2017, 287, 40–53. [Google Scholar] [CrossRef]
- Martín-Sotoca, J.J.; Saa-Requejo, A.; Grau, J.B.; Tarquis, A.M. Local 3D segmentation of soil pore space based on fractal properties using singularity maps. Geoderma 2018, 311, 175–188. [Google Scholar] [CrossRef]
- Liu, L.; Peng, Z.; Wu, H.; Jiao, H.; Yu, Y.; Zhao, J. Fast Identification of Urban Sprawl Based on K-Means Clustering with Population Density and Local Spatial Entropy. Sustainability 2018, 10, 2683. [Google Scholar] [CrossRef] [Green Version]
- Reishofer, G.; Koschutnig, K.; Enzinger, C.; Ebner, F.; Ahammer, H. Fractal Dimension and Vessel Complexity in Patients with Cerebral Arteriovenous Malformations. PLoS ONE 2012, 7, e41148. [Google Scholar] [CrossRef]
- Cheng, Q.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 1994, 51, 109–130. [Google Scholar] [CrossRef]
- Mallat, S.G. A Wavelet Tour of Signal Processing, 2nd ed.; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Mallat, S.; Hwang, W.L. Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 1992, 38, 617–643. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18 July 1967; Volume 1, pp. 281–297. [Google Scholar]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Congedo, L. Semi-automatic classification plugin documentation. Release 2016, 4, 29. [Google Scholar]
- Kovacic, Z.; Viteri Salazar, O. The lose-lose predicament of deforestation through subsistence farming: Unpacking agricultural expansion in the Ecuadorian Amazon. J. Rural Stud. 2017, 51, 105–114. [Google Scholar] [CrossRef]
- Tapia-Armijos, M.F.; Homeier, J.; Espinosa, C.I.; Leuschner, C.; De La Cruz, M. Deforestation and forest fragmentation in south Ecuador since the 1970s—Losing a hotspot of biodiversity. PLoS ONE 2015, 10, e0142359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Blanchet, F.G.; Koper, N. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. 2014, 5, 634–646. [Google Scholar] [CrossRef]
- Torrella, S.A.; Piquer-Rodríguez, M.; Levers, C.; Ginzburg, R.; Gavier-Pizarro, G.; Kuemmerle, T. Multiscale spatial planning to maintain forest connectivity in the Argentine Chaco in the face of deforestation. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef]
- Waliszewski, P. The Quantitative Criteria Based on the Fractal Dimensions, Entropy, and Lacunarity for the Spatial Distribution of Cancer Cell Nuclei Enable Identification of Low or High Aggressive Prostate Carcinomas. Front. Physiol. 2016, 7, 34. [Google Scholar] [CrossRef]
- Fernández, R.; González-Doncel, G.; Garcés, G. Fractal Analysis of Strain-Induced Microstructures in Metals. In Fractal Analysis—Selected Examples; IntechOpen: London, UK, 2020. [Google Scholar]
- Sun, J.; Southworth, J. Remote Sensing-Based Fractal Analysis and Scale Dependence Associated with Forest Fragmentation in an Amazon Tri-National Frontier. Remote Sens. 2013, 5, 454–472. [Google Scholar] [CrossRef] [Green Version]
- Ewers, R.M.; Laurance, W. Scale-dependent patterns of deforestation in the Brazilian Amazon. Environ. Conserv. 2006, 33, 203–211. [Google Scholar] [CrossRef] [Green Version]
Spatial Metrics | Description | Unit | References * |
---|---|---|---|
DA | Deforested area: the sum of the areas of all deforested patches. | ha | [26,27,28,29] |
Ratio | Ratio: the proportion between the actual (n) landscape class change with respect to time n-1. | proportion | [27] |
NP | Number of patches: the number of patches for each landscape class. | Unit (N) | [28,30,31,32,33,34] |
PD | Patch density: the density of the patches for each landscape class (number of patches per unit of area), representing an aspect of fragmentation—dissection of patches. Higher values represent a more fragmented landscape. | N/100 ha | [26,27,29,30,35] |
ED | Edge density: the amount of edge relative to the total landscape area. This metric facilitates comparison at different extent sizes. | m | [26,29,32,35,36,37,38] |
ENN_MN | Euclidean nearest neighbor mean distance: the mean distance between patches of the same landscape class, which could represent another aspect of fragmentation—connectivity between patches. Values range from 0 (adjacent patches) to infinity. | m | [27,28,30,38,39,40] |
CLUMPY | Clumpiness index: measures the degree to which the landscape class is aggregated or clumped given its total area. This is the measure of patch aggregation. Values of the clumpiness index close to -1 are a measure of a maximally disaggregated landscape class, whereas values of the clumpiness index close to 0 are indicative of distributed random patches and when the clumpiness index approaches 1, the deforestation patch type is maximally aggregated. | none | [37,39,40,41,42] |
CP | DA [ha] | Ratio | NP | PD | ED | ENN_MN | CLUMPY |
---|---|---|---|---|---|---|---|
1985–1990 | 15,221 | - | 32,536 | 3.26 | 10.94 | 112.21 | 0.45 |
1985–1995 | 18,503 | 1.21 | 35,962 | 3.60 | 12.87 | 106.75 | 0.47 |
1985–2000 | 103,006 | 5.57 | 52,050 | 5.21 | 39.89 | 92.68 | 0.68 |
1985–2005 | 131,649 | 1.28 | 51,937 | 5.20 | 47.54 | 91.43 | 0.69 |
1985–2010 | 155,574 | 1.18 | 47,119 | 4.72 | 52.05 | 92.06 | 0.70 |
1985–2015 | 185,854 | 1.19 | 41,125 | 4.12 | 56.28 | 94.11 | 0.72 |
1985–2018 | 211,555 | 1.19 | 38,330 | 2.27 | 35.72 | 96.89 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urgilez-Clavijo, A.; Rivas-Tabares, D.A.; Martín-Sotoca, J.J.; Tarquis Alfonso, A.M. Local Fractal Connections to Characterize the Spatial Processes of Deforestation in the Ecuadorian Amazon. Entropy 2021, 23, 748. https://doi.org/10.3390/e23060748
Urgilez-Clavijo A, Rivas-Tabares DA, Martín-Sotoca JJ, Tarquis Alfonso AM. Local Fractal Connections to Characterize the Spatial Processes of Deforestation in the Ecuadorian Amazon. Entropy. 2021; 23(6):748. https://doi.org/10.3390/e23060748
Chicago/Turabian StyleUrgilez-Clavijo, Andrea, David Andrés Rivas-Tabares, Juan José Martín-Sotoca, and Ana María Tarquis Alfonso. 2021. "Local Fractal Connections to Characterize the Spatial Processes of Deforestation in the Ecuadorian Amazon" Entropy 23, no. 6: 748. https://doi.org/10.3390/e23060748
APA StyleUrgilez-Clavijo, A., Rivas-Tabares, D. A., Martín-Sotoca, J. J., & Tarquis Alfonso, A. M. (2021). Local Fractal Connections to Characterize the Spatial Processes of Deforestation in the Ecuadorian Amazon. Entropy, 23(6), 748. https://doi.org/10.3390/e23060748