Timelessness Strictly inside the Quantum Realm
Abstract
:1. Classical World, CM
2. Quantum Realm, QM
3. Time Is Relational
4. Fundamental Directionality
5. Timelessness Strictly inside QM, Experiments with Slits
6. Tunneling
7. The Mosaic
Funding
Acknowledgments
Conflicts of Interest
References
- Interpretations of Quantum Mechanics. Available online: https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics (accessed on 15 July 2020).
- Zeilinger, A. On the Interpretation and Philosophical Foundation of Quantum Mechanics. In Vastakohtien todellisuus (Festschrift for K.V. Laurikainen); Ketvel, U., et al., Eds.; Helsinki University Press: Helsinki, Finland, 1996. [Google Scholar]
- Gell-Mann, M.; Hartle, J.B. Classical equations for quantum systems. Phys. Rev. D 1993, 47, 3345–3382. [Google Scholar] [CrossRef] [Green Version]
- Jennings, D.; Leifer, M. No return to classical reality. Contemp. Phys. 2016, 57, 60–82. [Google Scholar] [CrossRef] [Green Version]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–775. [Google Scholar] [CrossRef] [Green Version]
- Hagar, A. Decoherence: The view from the history and philosophy of science. Philos. Trans. R. Soc. A 2012, 370, 4594–4609. [Google Scholar] [CrossRef]
- Zeh, H.D. On the interpretation of measurement in quantum theory. Found. Phys. 1970, 1, 69–76. [Google Scholar] [CrossRef]
- Schlosshauer, M. Quantum decoherence. Phys. Rep. 2019, 831, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Novotny, J.; Alber, G.; Jex, I. Entanglement and Decoherence: Fragile and Robust Entanglement. Phys. Rev. Lett. 2011, 107, 090501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.-C.; Gao, F.; Cao, T.-Q.; Qin, S.-J.; Wen, Q.-Y. Entanglement as a resource to distinguish orthogonal product states. Sci. Rep. 2016, 6, 30493. [Google Scholar] [CrossRef] [PubMed]
- Lesovik, G.B.; Sadovskyy, I.A.; Lebedev, A.V.; Suslov, M.V.; Vinokur, V.M. Quantum H-theorem and irreversibility in quantum mechanics. arXiv 2013, arXiv:1312.7146. [Google Scholar]
- Lesovik, G.B.; Sadovskyy, I.A.; Suslov, M.V.; Lebedev, A.V.; Vinokur, V.M. Arrow of time and its reversal on the IBM quantum computer. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gambini, R.; García-Pintos, L.P.; Pullin, J. Single-world consistent interpretation of quantum mechanics from fundamental time and length uncertainties. Phys. Rev. A 2019, 100, 012113. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 1996, 28, 581–600. [Google Scholar] [CrossRef]
- Jivulescu, M.A.; Lupa, N.; Nechita, I. Thresholds for reduction-related entanglement criteria in quantum information theory. Quantum Inf. Comput. 2015, 15, 1165–1184. [Google Scholar]
- Javanmard, Y.; Trapin, D.; Bera, S.; Bardarson, J.H.; Heyl, M. Sharp entanglement thresholds in the logarithmic negativity of disjoint blocks in the transverse-field Ising chain. New J. Phys. 2018, 20, 083032. [Google Scholar] [CrossRef]
- Weilenmann, M.; Dive, B.; Trillo, D.; Aguilar, E.A.; Navascués, M. Entanglement Detection beyond Measuring Fidelities. Phys. Rev. Lett. 2020, 124, 200502. [Google Scholar] [CrossRef]
- Frauchiger, D.; Renner, R. Quantum theory cannot consistently describe the use of itself. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Thomsen, K. We just cannot have classical and quantum behavior at the same TIME. arXiv 2018, arXiv:1901.01841. [Google Scholar]
- Laloë, F. Can quantum mechanics be considered consistent? A discussion of Frauchiger and Renner’s argument. arXiv 2018, arXiv:1802.06396v3. [Google Scholar]
- Sudbery, A. Single-World Theory of the Extended Wigner’s Friend Experiment. Found. Phys. 2017, 47, 658–669. [Google Scholar] [CrossRef] [Green Version]
- Lazarovici, D.; Hubert, M. How Quantum Mechanics can consistently describe the use of itself. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kastner, R.E. Unitary-Only Quantum Theory Cannot Consistently Describe the Use of Itself: On the Frauchiger–Renner Paradox. Found. Phys. 2020, 50, 441–456. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M. The Flaw in Frauchiger and Renner’s Argument. Available online: https://mateusaraujo.info/2018/10/24/the-flaw-in-frauchiger-and-renners-argument/ (accessed on 27 January 2021).
- Yan, B.; Sinitsyn, N.A. Recovery of Damaged Information and the Out-of-Time-Ordered Correlators. Phys. Rev. Lett. 2020, 125, 040605. [Google Scholar] [CrossRef] [PubMed]
- Gisin, N. Stochastic quantum dynamics and relativity. Helv. Phys. Acta 1989, 62, 363–371. [Google Scholar] [CrossRef]
- Page, D.; Wootters, W.K. Evolution without evolution: Dynamics described by stationary observables. Phys. Rev. D 1983, 27, 2885–2892. [Google Scholar] [CrossRef]
- Schild, A. Time in quantum mechanics: A fresh look at the continuity equation. Phys. Rev. A 2018, 98, 052113. [Google Scholar] [CrossRef] [Green Version]
- Maccone, L.; Sacha, K. Quantum Measurements of Time. Phys. Rev. Lett. 2020, 124, 110402. [Google Scholar] [CrossRef] [Green Version]
- Unruh, W.G.; Wald, R.M. Time and the interpretation of canonical quantum gravity. Phys. Rev. D 1989, 40, 2598–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeilinger, A. A foundational principle for quantum mechanics. Found. Phys. 1999, 29, 631–643. [Google Scholar] [CrossRef]
- Minkowski, H. Raum und Zeit. Phys. Z. 1909, 10, 104–111. [Google Scholar]
- Rovelli, C. Forget time, ‘First Community Prize’ of the FQXi ‘The Nature of Time’ Essay Contest. arXiv 2009, arXiv:0903.3832. [Google Scholar]
- Barbour, J. The End of Time: The Next Revolution in Our Understanding of the Universe; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Alexander, H.G. The Leibniz-Clarke Correspondence: With Extracts from Newton’s ‘Principia’ and ‘Optiks’; Manchester University Press: Manchester, UK, 1956. [Google Scholar]
- Mach, E. Die Mechanik in Ihrer Entwicklung Historisch-Kritsch Dargestellt; Xenomoi Verlag: Leipzig, Germany, 1883. [Google Scholar]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 1916, 49, 769–822. [Google Scholar] [CrossRef] [Green Version]
- Hecht, E. The physics of time and the arrow thereof. Eur. J. Phys. 2017, 39, 015801. [Google Scholar] [CrossRef]
- Ranković, S.; Liang, Y.-C.; Renner, R. Quantum clocks and their synchronisation—The Alternate ticks Game. arXiv 2015, arXiv:1506.01373. [Google Scholar]
- Woods, M.P. Autonomous Ticking Clocks from Axiomatic Principles. Quantum 2021, 5, 381. [Google Scholar] [CrossRef]
- Anderson, E. Problem of time in quantum gravity. Ann. Phys. 2012, 524, 757–786. [Google Scholar] [CrossRef] [Green Version]
- Fiscaletti, D. The Timeless Approach: Frontier Perspectives in 21st Century Physics; World Scientific: Singapore, 2016. [Google Scholar]
- Smolin, L. Temporal relationalism. In Beyond Spacetime; Huggett, N., Matsubara, K., Wuthrich, C., Eds.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Sears, A.P.; Petrenko, A.; Catelani, G.; Sun, L.; Paik, H.; Kirchmair, G.; Frunzio, L.; Glazman, L.I.; Girvin, S.M.; Schoelkopf, R.J. Photon shot noise dephasing in the strong-dispersive limit of circuit QED. Phys. Rev. B 2012, 86, 180504. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.J.; Searles, D.J. Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 1994, 50, 1645–1648. [Google Scholar] [CrossRef] [Green Version]
- Harrington, P.M.; Tan, D.; Naghiloo, M.; Murch, K.W. Characterizing a Statistical Arrow of Time in Quantum Measurement Dynamics. Phys. Rev. Lett. 2019, 123, 020502. [Google Scholar] [CrossRef] [Green Version]
- Manikandan, S.K.; Elouard, C.; Jordan, A.N. Fluctuation theorems for continuous quantum measurements and absolute irreversibility. Phys. Rev. A 2019, 99, 022117. [Google Scholar] [CrossRef] [Green Version]
- Linden, N.; Popescu, S.; Short, A.J.; Winter, A. Quantum evolution towards thermal equilibrium. Phys. Rev. E 2009, 79, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Malabarba, A.S.L.; García-Pintos, L.P.; Linden, N.; Farrelly, T.; Short, A.J. Quantum systems equilibrate rapidly for most observables. Phys. Rev. E 2014, 90, 012121. [Google Scholar] [CrossRef] [Green Version]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Landauer, R. Information is Physical. Phys. Today 1991, 44, 23–29. [Google Scholar] [CrossRef]
- Yan, L.L.; Xiong, T.P.; Rehan, K.; Zhou, F.; Liang, D.F.; Chen, L.; Zhang, J.Q.; Yang, W.L.; Ma, Z.H.; Feng, M. Single-Atom Demonstration of the Quantum Landauer Principle. Phys. Rev. Lett. 2018, 120, 210601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudenzi, R.; Burzurí, E.; Maegawa, S.; Van Der Zant, H.S.J.; Luis, F. Quantum Landauer erasure with a molecular nanomagnet. Nat. Phys. 2018, 14, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H. Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2003, 34, 501–510. [Google Scholar] [CrossRef] [Green Version]
- Vaccaro, J.A.; Barnett, S.M. Information erasure without an energy cost. Proc. R. Soc. A Math. Phys. Eng. Sci. 2011, 467, 1770–1778. [Google Scholar] [CrossRef] [Green Version]
- Sagawa, T.; Ueda, M. Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure. Phys. Rev. Lett. 2009, 102, 250602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streltsov, A.; Singh, U.; Dhar, H.S.; Bera, M.N.; Adesso, G. Measuring Quantum Coherence with Entanglement. Phys. Rev. Lett. 2015, 115, 020403. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.J.D.; Guarnieri, G.; Mitchison, M.T.; Goold, J. Quantum Fluctuations Hinder Finite-Time Information Erasure near the Landuaer Limit. Phys. Rev. Lett. 2020, 125, 160602. [Google Scholar] [CrossRef]
- Jacobs, K. Deriving Landauer’s erasure principle from statistical mechanics. arXiv 2005, arXiv:quant-ph/0512105. [Google Scholar]
- Goold, J.; Paternostro, M.; Modi, K. A non-equilibrium quantum Landauer principle. arXiv 2015, arXiv:1402.4499. [Google Scholar]
- Holevo, A. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 1973, 9, 3–11. [Google Scholar]
- Plenio, M.B. The Holevo bound and Landauer’s principle. Phys. Lett. A 1999, 263, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Cramer, J.G. The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 1986, 58, 647–687. [Google Scholar] [CrossRef]
- Pfau, T.; Spälter, S.; Kurtsiefer, C.; Ekstrom, C.R.; Mlynek, J. Loss of Spatial Coherence by a Single Spontaneous Emission. Phys. Rev. Lett. 1994, 73, 1223–1226. [Google Scholar] [CrossRef] [Green Version]
- Kokorowski, D.A.; Cronin, A.D.; Roberts, T.D.; Pritchard, D.E. From single- to multiple-photon decoherence in an atom interferometer. Phys. Rev. Lett. 2001, 86, 2191–2195. [Google Scholar] [CrossRef] [Green Version]
- Drossel, B.; Ellis, F.R. Contextual wavefunction collapse: An integrated theory of quantum measurement. N. J. Phys. 2018, 20, 113025. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Time: A Constructal viewpoint & its consequences. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bloch, F. Nuclear Induction. Phys. Rev. 1946, 70, 460–474. [Google Scholar] [CrossRef]
- Fuchs, C.A. Information Gain vs. State Disturbance in Quantum Theory. Quantum Comput. 2004, 96, 229–259. [Google Scholar] [CrossRef] [Green Version]
- Qing-Yu, C. Information Erasure and Recovery in Quantum Memory. Chin. Phys. Lett. 2004, 21, 1189–1190. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Gaebler, J.; Reiter, F.; Tan, T.R.; Bowler, R.; Sørensen, A.S.; Leibfried, D.; Wineland, D.J. Dissipative production of a maximally entangled steady state of two quantum bits. Nat. Cell Biol. 2013, 504, 415–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, S.; Hatridge, M.; Leghtas, Z.; Sliwa, K.M.; Narla, A.; Vool, U.; Girvin, S.M.; Frunzio, L.; Mirrahimi, M.; Devoret, M.H. Autonomously stabilized entanglement between two superconducting quantum bits. Nat. Cell Biol. 2013, 504, 419–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, T.; Delbecq, M.R.; Otsuka, T.; Amaha, S.; Yoneda, J.; Noiri, A.; Takeda, K.; Allison, G.; Ludwig, A.; Wieck, A.D.; et al. Coherent transfer of electron spin correlations assisted by dephasing noise. Nat. Commun. 2018, 9, 2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aharonov, Y.; Bergmann, P.G.; Lebowitz, J.L. Time Symmetry in the Quantum Process of Measurement. Phys. Rev. 1964, 134, B1410–B1416. [Google Scholar] [CrossRef]
- Ellis, F.R.; Drossel, B. Emergence of time. Found. Phys. 2020, 50, 161–190. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.-Y.; Zhu, Z.-H.; Liu, S.-L.; Li, Y.-H.; Shi, S.; Ding, D.-S.; Chen, L.-X.; Gao, W.; Guo, G.-C.; Shi, B.-S. Quantum twisted double-slits experiments: Confirming wavefunctions’ physical reality. Sci. Bull. 2017, 62, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Lamb, W.E. An operational interpretation of nonrelativistic quantum mechanics. Phys. Today 1969, 22, 23–28. [Google Scholar] [CrossRef]
- Pusey, M.; Barrett, J.; Rudolph, T. On the reality of the quantum state. Nat. Phys. 2012, 8, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Leifer, M.S. Is the Quantum State Real? An Extended Review of ψ-ontology Theorems. Quanta 2014, 3, 67. [Google Scholar] [CrossRef]
- Fields, C. Decoherence as a sequence of entanglement swaps. Results Phys. 2019, 12, 1888–1892. [Google Scholar] [CrossRef]
- Bohr, N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 1935, 48, 696–702. [Google Scholar] [CrossRef]
- Wheeler, A. The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics; Davies, P.C.W., Brown, J.R., Eds.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Singh, T.P. The Problem of Time and the Problem of Quantum Measurement. arXiv 2012, arXiv:1210.8110. [Google Scholar]
- Renninger, M. Messungen ohne Störung des Meßobjekts. Zeitschrift Physik 1960, 158, 417–421. [Google Scholar] [CrossRef]
- Vaidman, L. The Meaning of the Interaction-Free Measurements. Found. Phys. 2003, 33, 491–510. [Google Scholar] [CrossRef]
- Bohr, N. Quantum Physics and Philosophy: Causality and Complementarity. In Philosophy in Mid-Century: A Survey; Klibansky, R., Ed.; La Nuova Italia Editrice: Florence, Italy, 1963. [Google Scholar]
- Miller, W.A.; Wheeler, J.A. International Symposium on Foundations of Quantum Mechanics in the Light of New Technology; Physical Society: Tokyo, Japan, 1983. [Google Scholar]
- Aspect, A. Bell’s inequality test: More ideal than ever. Nat. Cell Biol. 1999, 398, 189–190. [Google Scholar] [CrossRef]
- Clemente, L.; Kofler, J. Necessary and sufficient conditions for macroscopic realism from quantum mechanics. Phys. Rev. A 2015, 91, 062103. [Google Scholar] [CrossRef] [Green Version]
- Gomes, H. Timeless Configuration Space and the Emergence of Classical Behavior. Found. Phys. 2018, 48, 668–715. [Google Scholar] [CrossRef] [Green Version]
- Pauli, W. The General Principles of Quantum Mechanics; Springer Verlag: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Kullie, O. Tunneling time in attosecond experiments and the time-energy uncertainty relation. Phys. Rev. A 2015, 92, 052118. [Google Scholar] [CrossRef] [Green Version]
- Kullie, O. Time Operator, Real Tunneling Time in Strong Field Interaction and the Attoclock. Quantum Rep. 2020, 2, 233–252. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef] [Green Version]
- Klauck, F.; Teuber, L.; Ornigotti, M.; Heinrich, M.; Scheel, S.; Szameit, A. Observation of PT-symmetric quantum interference. Nat. Photonics 2019, 13, 883–887. [Google Scholar] [CrossRef] [Green Version]
- Graefe, E.-M. PT symmetry dips into two-photon interference. Nat. Photonics 2019, 13, 822–823. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Luo, L. Unification of quantum Zeno-anti Zeno effects and parity-time symmetry breaking transitions. arXiv 2020, arXiv:2004.01364. [Google Scholar]
- Riek, R. A Derivation of a Microscopic Entropy and Time Irreversibility from the Discreteness of Time. Entropy 2014, 16, 3149–3172. [Google Scholar] [CrossRef] [Green Version]
- Elitzur, A.C.; Dolev, S. Quantum Phenomena Within a New Theory of Time. In Quo Vadis Quantum Mechanics? Elitzur, A.C., Dolev, S., Kolenda, N., Eds.; Springer: Berlin, Germany, 2005. [Google Scholar]
- Merli, P.G.; Missiroli, G.F.; Pozzi, G. On the statistical aspect of electron interference phenomena. Am. J. Phys. 1976, 44, 306–307. [Google Scholar] [CrossRef] [Green Version]
- Arndt, M.; Nairz, O.; Vos-Andreae, J.; Keller, C.; Van Der Zouw, G.; Zeilinger, A. Wave–particle duality of C60 molecules. Nat. Cell Biol. 1999, 401, 680–682. [Google Scholar] [CrossRef]
- Nairz, O.; Arndt, M.; Zeilinger, A. Quantum interference experiments with large molecules. Am. J. Phys. 2003, 71, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Sawant, R.; Samuel, J.; Sinha, A.; Sinha, S.; Sinha, U. Nonclassical Paths in Quantum Interference Experiments. Phys. Rev. Lett. 2014, 113, 120406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, A.; Vijay, A.H.; Sinha, U. On the superposition principle in interference experiments. Sci. Rep. 2015, 5, 10304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorkin, R.D. Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 1994, 9, 3119–3127. [Google Scholar] [CrossRef] [Green Version]
- Rengaraj, G.; Prathwiraj, U.; Sahoo, S.N.; Somashekhar, R.; Sinha, U. Measuring the deviation from the superposition principle in interference experiments. New J. Phys. 2018, 20, 063049. [Google Scholar] [CrossRef]
- Magana-Loaiza, O.S.; De Leon, I.; Mirhosseini, M.; Fickler, R.; Safari, A.; Mick, U.; McIntyre, B.; Banzer, P.; Rodenburg, B.; Leuchs, G.; et al. Exotic looped trajectories of photons in three-slit interference. Nat. Commun. 2016, 7, 13987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Paz, I.G.; Vieira, C.; Ducharme, R.; Cabral, L.; Alexander, H.; Sampaio, M.D.R. Gouy phase in nonclassical paths in a triple-slit interference experiment. Phys. Rev. A 2016, 93, 033621. [Google Scholar] [CrossRef] [Green Version]
- Hackermüller, L.; Hornberger, K.; Brezger, B.; Zeilinger, A.; Arndt, M. Decoherence of matter waves by thermal emission of radiation. Nat. Cell Biol. 2004, 427, 711–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornberger, K.; Uttenthaler, S.; Brezger, B.; Hackermüller, L.; Arndt, M.; Zeilinger, A. Collisional Decoherence Observed in Matter Wave Interferometry. Phys. Rev. Lett. 2003, 90, 160401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coles, P.J.; Kaniewski, J.; Wehner, S. Equivalence of wave–particle duality to entropic uncertainty. Nat. Commun. 2014, 5, 5814. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, M.; Goggin, M.E.; de Almeida, M.P.; Lanyon, B.P.; White, A.G. Complementarity in variable strength quantum non-demolition measurements. New J. Phys. 2009, 11, 093012. [Google Scholar] [CrossRef]
- Kolenderski, P.; Scarcella, C.; Johnsen, K.D.; Hamel, D.R.; Holloway, C.; Shalm, L.K.; Tisa, S.; Tosi, A.; Resch, K.J.; Jennewein, T. Time-resolved double-slit interference pattern measurement with entangled photons. Sci. Rep. 2014, 4, 4685. [Google Scholar] [CrossRef]
- Kocsis, S.; Braverman, B.; Ravets, S.; Stevens, M.J.; Mirin, R.P.; Shalm, L.K.; Steinberg, A.M. Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer. Conf. Lasers Electro-Opt. 2011, 332, 1170–1173. [Google Scholar] [CrossRef]
- Xiao, Y.; Wiseman, H.M.; Xu, J.-S.; Kedem, Y.; Li, C.-F.; Guo, G.-C. Observing momentum disturbance in double-slit «which-way» measurements. Sci. Adv. 2019, 5, eaav:9547. [Google Scholar] [CrossRef] [Green Version]
- Mahler, D.H.; Rozema, L.; Fisher, K.; Vermeyden, L.; Resch, K.J.; Wiseman, H.M.; Steinberg, A. Experimental nonlocal and surreal Bohmian trajectories. Sci. Adv. 2016, 2, e1501466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, A. Mathematical Foundations of Quantum Theory; Marlow, A.R., Ed.; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Jacques, V.; Wu, E.; Grosshans, F.; Treussart, F.; Grangier, P.; Aspect, A.; Roch, J.-F. Experimental Realization of Wheeler’s Delayed-Choice Gedanken Experiment. Science 2007, 315, 966–968. [Google Scholar] [CrossRef] [Green Version]
- Manning, A.G.; Khakimov, R.I.; Dall, R.G.; Truscott, A.G. Wheeler’s delaced-choice gedanken experiment with a single atom. Nat. Phys. 2015, 11, 539–544. [Google Scholar] [CrossRef]
- Leung, C.; Brown, A.; Nguyen, H.; Friedman, A.; Kaiser, D.I.; Gallicchio, J. Astronomical random numbers for quantum foundations experiments. Phys. Rev. A 2018, 97, 042120. [Google Scholar] [CrossRef] [Green Version]
- Afshar, S.S.; Flores, E.; McDonald, K.F.; Knoesel, E. Paradox in Wave-Particle Duality. Found. Phys. 2007, 37, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Jacques, V.; Lai, N.D.; Dréau, A.; Zheng, D.; Chauvat, D.; Treussart, F.; Grangier, P.; Roch, J.-F. Illustration of quantum complementarity using single photons interfering on a grating. New J. Phys. 2008, 10, 123009. [Google Scholar] [CrossRef]
- Horsman, D.; Heunen, C.; Pusey, M.; Barrett, J.; Spekkens, R.W. Can a quantum state over time resemble a quantum state at a single time? Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170395. [Google Scholar] [CrossRef]
- Masanes, L.; Galley, T.D.; Müller, M.P. The measurement postulates of quantum mechanics are operationally redundant. Nat. Commun. 2019, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Born’s rule from measurements of classical signals by threshold detectors which are properly calibrated. J. Mod. Opt. 2012, 59, 667–678. [Google Scholar] [CrossRef] [Green Version]
- La Cour, B.R.; Williamson, M.C. Emergence of the Born rule in quantum optics. Quantum 2020, 4, 350. [Google Scholar] [CrossRef]
- Riek, R. On the nature of the Born rule. arXiv 2019, arXiv:1901.03663. [Google Scholar]
- Lindgren, J.; Liukkonen, J. Quantum Mechanics can be understood through stochastic optimization on spacetimes. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Barbour, J.; Koslowski, T.; Mercati, F. Identification of a Gravitational Arrow of Time. Phys. Rev. Lett. 2014, 113, 181101. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E. Records Theory. Int. J. Mod. Phys. D 2009, 18, 635–667. [Google Scholar] [CrossRef] [Green Version]
- Zurek, W.H. Quantum Darwinism, classical reality, and the randomness of quantum jumps. Phys. Today 2014, 67, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Riedel, C.J.; Zurek, W.H.; Zwolak, M. Objective past of a quantum universe: Redundant records of consistent histories. Phys. Rev. A 2016, 93, 032126. [Google Scholar] [CrossRef] [Green Version]
- Winful, H.G. Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox. Phys. Rep. 2006, 436, 1–69. [Google Scholar] [CrossRef]
- Raciti, F.; Salesi, G. Complex-barrier tunnelling times. J. Phys. I 1994, 4, 1783–1789. [Google Scholar] [CrossRef] [Green Version]
- Nimtz, G.; Spieker, H.; Brodowsky, H.M. Tunneling with dissipation. J. Phys. I 1994, 4, 1379–1382. [Google Scholar] [CrossRef]
- Torlina, L.; Morales, F.; Kaushal, J.; Ivanov, I.; Kheifets, A.; Zielinski, A.; Scrinzi, A.; Muller, H.G.; Sukiasyan, S.; Ivanov, M.; et al. Interpreting attoclock measurements of tunnelling times. Nat. Phys. 2015, 11, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Sainadh, U.S.; Xu, H.; Wang, X.; Atia-Tul-Noor, A.; Wallace, W.C.; Douguet, N.; Bray, A.; Ivanov, I.; Bartschat, K.; Kheifets, A.; et al. Attosecond angular streaking and tunnelling time in atomic hydrogen. Nat. Cell Biol. 2019, 568, 75–77. [Google Scholar] [CrossRef] [Green Version]
- Mandelstam, L.; Tamm, I. The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. Phaenomenologica 1991, 9, 115–123. [Google Scholar] [CrossRef]
- Urbanowski, K. Remarks on the uncertainty relations. Mod. Phys. Lett. A 2020, 35, 2050219. [Google Scholar] [CrossRef]
- Quiao, C.; Ren, Z.-Z. Uncertainty in Larmor clock. Chin. Phys. C 2011, 35, 992–996. [Google Scholar] [CrossRef]
- Spierings, D.C.; Steinberg, A.M. Tunneling takes less time when it’s less probable. arXiv 2021, arXiv:2101.12309v1. [Google Scholar]
- Busch, P. The Time-Energy Uncertainty Relation. Lect. Notes. Phys. 2008, 734, 73–105. [Google Scholar]
- Dumont, R.S.; Rivlin, T.; Pollak, E. The relativistic tunneling flight time may be superluminal, but it does not imply superluminal signaling. New J. Phys. 2020, 22, 093060. [Google Scholar] [CrossRef]
- Capellmann, H. Space-Time in Quantum Theory. Found. Phys. 2021, 51, 1–34. [Google Scholar] [CrossRef]
- Ren, C.; Hofmann, H.F. Analysis of the time-energy entanglement of down-converted photon pairs by correlated single-photon interference. Phys. Rev. A 2012, 86, 04823. [Google Scholar] [CrossRef] [Green Version]
- Hatridge, M.; Shankar, S.; Mirrahimi, M.; Schackert, F.; Geerlings, K.; Brecht, T.; Sliwa, K.M.; Abdo, B.; Frunzio, L.; Girvin, S.M.; et al. Quantum Back-Action of an Individual Variable-Strength Measurement. Science 2013, 339, 178–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüders, G. Über die Zustandsänderung durch den Meßprozeß. Annalen Physik Berlin 1950, 443, 322–328. [Google Scholar] [CrossRef]
- Minev, Z.K.; Mundhada, S.O.; Shankar, S.; Reinhold, P.; Gutiérrez-Jáuregui, R.; Schoelkopf, R.J.; Mirrahimi, M.; Carmichael, H.J.; Devoret, M.H. To catch and reverse a quantum jump mid-flight. Nature 2019, 570, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Pokorny, F.; Zhang, C.; Higgins, G.; Cabello, A.; Kleinmann, M.; Hennrich, M. Tracking the Dynamics of an Ideal Quantum Measurement. Phys. Rev. Lett. 2020, 124, 080401. [Google Scholar] [CrossRef] [Green Version]
- Guryanova, Y.; Friis, N.; Huber, M. Ideal Projective Measurements Have Infinite Resource Costs. Quantum 2020, 4, 222. [Google Scholar] [CrossRef] [Green Version]
- Fields, C. Some Consequences of the Thermodynamic Cost of System Identification. Entropy 2018, 20, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Santo, F.; Gisin, N. Physics without determinism: Alternative interpretations of classical physics. Phys. Rev. A 2019, 100, 062107. [Google Scholar] [CrossRef] [Green Version]
- Boekholt, T.C.N.; Zwart, S.F.P.; Valtonen, M. Gargantuan chaotic gravitational three-body systems and their irreversibility to the Planck length. Mon. Not. R. Astron. Soc. 2020, 493, 3932–3937. [Google Scholar] [CrossRef]
- Riek, R. Entropy Derived from Causality. Entropy 2020, 22, 647. [Google Scholar] [CrossRef]
- Smolin, L. Beyond weird. New Sci. 2019, 24, 35–37. [Google Scholar] [CrossRef]
- Ried, K.; MacLean, J.-P.W.; Spekkens, R.W.; Resch, K.J. Quantum to classical transitions in causal relations. Phys. Rev. A 2017, 95, 062102. [Google Scholar] [CrossRef] [Green Version]
- Quantum causality. Nat. Phys. 2014, 10, 259–263. [CrossRef]
- Procopio, L.M.; Moqanaki, A.; Araújo, M.; Costa, F.; Calafell, I.A.; Dowd, E.G.; Hamel, D.R.; Rozema, L.A.; Brukner, Č.; Walther, P. Experimental superposition of orders of quantum gates. Nat. Commun. 2015, 6, 7913. [Google Scholar] [CrossRef] [Green Version]
- Oreshkov, O.; Costa, F.; Brukner, Č. Quantum correlations with no causal order. Nat. Commun. 2012, 3, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, G.F.R. The evolving block universe and the meshing together of times. Ann. N. Y. Acad. Sci. 2014, 1326, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Drossel, B. What condensed matter physics and statistical physics teach us about the limits of unitary time evolution. Quantum Stud. Math. Found. 2019, 7, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.W. More is different, Broken symmetry and the nature of the hierarchical structure of science. Science 1972, 177, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, N. Die Erkenntnis im Lichte der Ontologie, mit einer Einführung von Josef Stallmach; Felix Meiner Verlag: Hamburg, Germany, 1982. [Google Scholar]
- Haken, H. Synergetics, An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology, 3rd ed.; Springer: New York, NY, USA, 1983. [Google Scholar]
- Pearson, A.N.; Guryanova, Y.; Erker, P.; Laird, E.A.; Briggs, G.A.D.; Huber, M.; Ares, N. Measuring the Thermodynamic Cost of Timekeeping. Phys. Rev. X 2021, 11, 021029. [Google Scholar] [CrossRef]
- Kiefer, C. Space, Time, Matter in Quantum Gravity. arXiv 2009, arXiv:0909.3767. [Google Scholar]
- Verlinde, E.P. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 29, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Freidel, L.; Leigh, R.G.; Minic, D. Modular Spacetime and Metastring Theory. J. Phys. Conf. Ser. 2017, 804, 012032. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomsen, K. Timelessness Strictly inside the Quantum Realm. Entropy 2021, 23, 772. https://doi.org/10.3390/e23060772
Thomsen K. Timelessness Strictly inside the Quantum Realm. Entropy. 2021; 23(6):772. https://doi.org/10.3390/e23060772
Chicago/Turabian StyleThomsen, Knud. 2021. "Timelessness Strictly inside the Quantum Realm" Entropy 23, no. 6: 772. https://doi.org/10.3390/e23060772
APA StyleThomsen, K. (2021). Timelessness Strictly inside the Quantum Realm. Entropy, 23(6), 772. https://doi.org/10.3390/e23060772