Statistical Mechanics and Thermodynamics: Boltzmann’s versus Planck’s State Definitions and Counting †
Abstract
:1. Introduction
2. The Three Description Levels: Configuration–Occupation–Occupancy
- 1.
- Configuration: which particle is in which cell? Both the particles and the cells are distinguished and thus non-interchangeable.
- 2.
- 3.
- Occupancy: how many cells host how many (0, 1, 2, …) particles? The particles and the cells containing the same number of particles are not distinguished and thus interchangeable (used by Boltzmann 1877 [2]).
2.1. Level 1: Configuration
2.2. Level 2: Occupation
2.3. Level 3: Occupancy
3. Boltzmann’s 1868 State Definition and Counting
3.1. 1 Particle
3.2. 2 Particles
3.3. 3 Particles
3.4. 4 Particles
3.5. n Particles. Summary and Discussion
4. Boltzmann’s 1877 State Definition and Counting
4.1. The Discrete Gas Model
4.2. The Kinetic Energy Distribution. Complexions
4.3. Example
4.4. The Number of Complexions, P
4.5. The Most Likely State Distribution
4.6. Unfinished Combinatorics about the Most Likely State Distribution
4.6.1. Bernoulli (Binomial) Distribution
4.6.2. The Most Probable State Distribution. II. Maxwell-Boltzmann à la Bach
4.7. P Yields an Extensive Entropy
4.8. Planckian Mean Energy of a Molecule
5. Planck’s Thermodynamic Derivation of His Radiation Formula
5.1. Thermodynamics of Electromagnetic Radiation
5.2. Planck’s Radiation Formula I
6. Planck’s State Definitions and Counting
6.1. Planck’s 1900 Probabilistic Approach
- (i)
- of the resonators onto the different energy ranges,
- (ii)
- of the energy onto the different resonators (§ 150 and § 148 in Planck’s 1906 lectures, respectively).
- i.
- the radiation in all resonators,
- ii.
- of all frequencies, and
- iii.
- the radiation in the medium surrounding the resonators; it comprises all frequencies.
6.2. Planck’s 1901 Modifications
7. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
1 | Maxwell to Tait, 1873, quoted after [10], p. 83. |
2 | |
3 | “1868” in the original text is a typo; there, I have seen only the occupation numbers, see Section 3. The 1877 memoir [2] will be considered in Section 4. Bach’s notation is replaced with Boltzmann’s 1877 [2] ones: . Planck [1,6] distributes P energy elements aka particles onto N resonators aka cells. |
4 | I’m using the notion ‘equal’ in the sense of Helmholtz, H. v. Einleitung zu den Vorlesungen über Theoretische Physik (Vorlesungen über Theoretische Physik, Vol. I/1; König, A., Runge, C., Eds.; Barth: Leipzig, 1903, pp. 1–50. Reprint in: [14], pp. 11–62. Equal classical particles are still distinguished by their location. Identical particles are—strictly speaking—equal in all their properties. |
5 | https://en.wikipedia.org/wiki/Stars_and_bars_(combinatorics), Theorem 2 (accessed on 3 March 2021). [13] (p. 38, eq. (5.2)). See also [15] especially w.r.t. Planck’s combinatorics. |
6 | For a more detailed account, see [3] (p. 13f). |
7 | Actually, Ehrenfest & Kamerlingh Onnes [14] do that for Planck’s result, i.e., for Q_2. |
8 | There is a 1984 Russian edition of collected works [20]. |
9 | |
10 | All quotations refer to the translation by Sharp & Matschinsky [7]. Boltzmann’s equation numbers are indicated as (B-*). Several formulas are added for the sake of clarity of expla-nation. |
11 | This view is seconded in the report on this article in Fortschr. Physik in 1877, 1882, pp. 671–678. |
12 | This does not mean, that a complexion is represented by the occupancy numbers, w0, …, wp, but refers to the fact that the the occupancy numbers follow from the occupation numbers (complexion), see formula (13). |
13 | Descartes’ rule of signs asserts that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number. A root of multi-plicity k is counted as k roots. Boltzmann takes into account that , since , see formula (54). |
14 | |
15 | A more exact translation of the original word “mannigfaltig” [18] (Vol. II, p. 211) is ‘di-versely’ or ‘multifariously’. |
16 | The translation of the original “gleichbeschaffene Kugeln” [18] (Vol. II, p. 211) to “identical balls” may suggest the balls to be indistinguishable. This, however, would contradict the second sentence. Actually, “gleichbeschaffen” (being equal) means that the probability of being drawn is the same for all balls. Both the molecules and the balls are distinguished (e.g., by numbers); otherwise, it would not be possible that “every ball corresponds to a certain molecule”. |
17 | A more accurate translation is this: One of the various possible complexions will be that the ball corresponding to the first molecule has been drawn in all λ moves). |
18 | This corresponds to the occupation numbers in Section I with : means , etc. |
19 | Planck, M. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: Barth, 1906. En: The Theory of Heat Radiation (authorized transl. by M. Masius), Blakiston 1914, reprints: Mineola, N.Y.: Dover 1959, 1991. I will refer to the 1991 Dover edition. (1991-n) denotes formula (n) therein. At once, I will stay with Boltzmann’s notations. |
20 | I am not aware of its use in thermodynamics before and after Planck. It has been intro-duced by Planck in a 1900 article [32] which is not contained in the collection [33] on Planck’s way to his radiation formula. There is a Russian translation by R. B. Segalya in [34], pp. 234–248) second derivative Planck finds. |
21 | Wien writes the distribution over the wavelength, λ: (C, c—constants). |
22 | For , it becomes the Rayleigh–Jeans formula, which, however, was pub-lished only by Jeans in 1905 [38]. Rubens informed Planck about that during his visit on 7 October 1900 (after [39], p. 1036 I, confirmed in [40], p. 156). After Kangro [41] (1970, Sect. 8.8; 1976, pp. 198–200), Planck’s student “Hettner [39] obtained the information from Planck himself.” (quoted after [42], p. 43, fn. 54). |
23 | I tend to agree with https://en.wikipedia.org/wiki/Planck%27s_law (accessed on 2 June 2021) that “Planck perhaps patched together these two heuristic formulas”, citing Hettner 1922 (see [39], p. 1036 II, formula (8)), and [43]. Planck’s 1943 memories [40] (p. 156) second that view. |
24 | Original text: “Am Morgen des nächsten Tages suchte mich der Kollege Rubens auf und erzählte, daß er nach dem Schluß der Sitzung noch in der nämlichen Nacht meine Formel mit seinen Messungsdaten genau verglichen und überall eine befriedigende Überein-stimmung gefunden habe”. |
25 | [27], p. 238 (5th lecture); En.: … according to this, resonators with a large number of vibra-tions show particular greed for energy (whereby it can then happen to them during the exchange of the energy elements that they get particularly few of them). |
26 | Notice, that—contrary to numerous representations—the resonators are not in the walls. Ehrenfest [54] (p. 3 I) writes, “Die Resonatoren innerhalb der Spiegelhülle leisten dasselbe wie eine leere Spiegelhülle, die an einzelnen Stellen diffus reflektiert.”—Engl.: The resona-tors inside the mirror shell perform the same as an empty mirror shell which reflects diffusely at single places—The cavity, however, has got infinitely many ultraviolet har-monics. (p. 6 II) This rules out that equivalence. |
27 | |
28 | |
29 | For some difficulties of this assumption, see [54], pp. 2 II–4 I. |
30 | |
31 | A correct translation is ’indifferent and, according to their size, comparable original mar-gins’ [60] (p. 36). Kries‘ original text [60] in more detail: “Als Gesamt-Ergebnis der logischen Untersuchung erhalten wir somit den Satz, dass Annahmen in einem zahlen-mäßig angebbaren Wahrscheinlichkeits-Verhältnis stehen, wenn sie indifferente und ihrer Größe nach vergleichbare ursprüngliche Spielräume umfassen, und dass bestimmte Wahrscheinlichkeits-Werte sich daher da ergeben, wo die Gesamtheit aller Möglichkeiten durch eine Anzahl solcher Annahmen ausgeschöpft werden kann.“ (p. 36) En.: As an overall result of the logical investigation, we thus obtain the proposition that assumptions are in a numerically specifiable probability ratio if they comprise indifferent and, accord-ing to their size, comparable original margins, and that certain probability values there-fore arise where the totality of all possibilities can be exhausted by a number of such as-sumptions. Later, Kries repeats, “Als Grundlage unserer Theorie ist der Satz zu betrachten, dass Annahmen, welche gleiche und indifferente ursprüngliche Spielräume umfassen, gleich wahrscheinlich sind.” (p. 157) En.: The basis of our theory is the theorem that assumptions involving equal and indifferent original margins are equally probable.—Planck correctly quotes Kries’ text. |
32 | Later, Planck [51] (Pt. III, Ch. IV) argues that the number of complexions at thermodynam-ic equilibrium is very much larger than the number of complexions at non-equilibrium. For this, “the number of all possible complexions is a good approximation to the number of complexions at thermodynamic equilibrium and thus to the maximum “thermody-namic probability””. |
33 | Ehrenfest [54] (p. 6 II) points to the fact, that for and that that does not rise difficulties, since Uv (114) does not diverge. |
34 | I replace Bach’s “Bose-Einstein” with ‘Planck(ian)’, because there is no chemical poten-tial. |
35 | Original text: “Es ist nicht zu leugnen, dass in dieser Ableitung eine gewisse Willkür steckt; denn man kann ein solches Lotter-iespiel nach verschiedenen Grundsätzen ein-richten. … Die bestimmte Annahme, die wir über die Verlosung gemacht haben, ist also theoretisch nicht zu begründen; sie ist ein Notbehelf, der nicht zu umgehen ist, weil wir die wirklichen Vorgänge nicht kennen.” (p. 255) “Bei alledem muss es das Ziel bleiben, die Wahrscheinlichkeitsbetrachtungen durch die Betrachtung der realen Vorgänge zu ersetzen …” (p. 257). |
References
- Planck, M. Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verh. Dtsch. Phys. Gesell. 1900, 2, 237–245, ((Talk Dated 14.12.1900); Reprint: (Planck 1997), No. V; En.: (ter Haar 1967), No. 2). Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/phbl.19480040404 (accessed on 2 June 2021).
- Boltzmann, L. Über die Beziehung zwischen dem zweiten Hauptsatze der Mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respective den Sätzen über das Wärmegleichgewicht. Wiener Ber. 1877, 76, 373–435, ((Wiss. Abh. Vol. II, No. 42, pp. 164–223); Russ.: (Boltzmann 1984) (pp. 190–235; transl. by I. S. Alekseyeva); German/English: J. Le Roux, 2002; En.: (Sharp 2015)). Available online: http://users.polytech.unice.fr/~leroux/boltztrad.pdf (accessed on 2 June 2021).
- Bach, A. Boltzmann’s probability distribution of 1877. Arch. Hist. Exact Sci. 1990, 41, 1–40. [Google Scholar]
- Bach, A. Indistinguishable Classical Particles; (Lect. Notes Phys. m44); Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Boltzmann, L. Studien Über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Wiener Ber. 1868, 58, 517–560, (in: (Boltzmann 1965), Vol. I, No. 5, pp. 49–96). [Google Scholar] [CrossRef]
- Planck, M. Über das Gesetz der Energieverteilung im Normalspectrum. Ann. Phys. 1901, 4, 553–563, (Reprints in: (Planck 1997) No. VI, (Schöpf 1978), pp. 178–191; Engl.: On the Law of Distribution of Energy in the Normal Spectrum) . Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19013090310 (accessed on 2 June 2021). [CrossRef]
- Sharp, K.; Matschinsky, F. Translation of Ludwig Boltzmann’s Paper “On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium” [1877]. Entropy 2015, 17, 1971–2009. Available online: https://www.mdpi.com/1099-4300/17/4/1971 (accessed on 2 June 2021). [CrossRef] [Green Version]
- Pais, A. Subtle Is the Lord. The Science and the Life of Albert Einstein; Oxford University Press: Oxford, UK, 2005; Available online: https://vk.com/doc278943367_493479949 (accessed on 2 June 2021).
- Cohen, E.G.D. Entropy, Probability and Dynamics. arXiv 2008, arXiv:0807.1268v2. [Google Scholar]
- Klein, M.J. The Development of Boltzmann’s Statistical Ideas. Acta Phys. Austriaca 1973, 10, 53–106. [Google Scholar]
- Kuryshova, Y.V. Principles of Combinatorics. Available online: https://internat.msu.ru/media/uploads/2015/11/Nachala-kombinatoriki.pdf (accessed on 3 February 2021). (In Russian).
- Brinken, A. Einführung in die Kombinatorik. 2007. (Revised by H. Plotke 2011). Available online: https://www.schule-bw.de/faecher-und-schularten/mathematisch-naturwissenschaftliche-faecher/mathematik/unterrichtsmaterialien/sekundarstufe1/zufall/pascal/kombinatorik.pdf (accessed on 2 June 2021).
- Feller, W. An Introduction to Probability Theory and Its Applications, Volume 1; Wiley: New York, NY, USA, 1970. [Google Scholar]
- Rompe, R.; Treder, H.-J. Zur Grundlegung der theoretischen Physik. Beiträge von H. v. Helmholtz und H. Hertz; (WTB Texte und Studien 284); Akade-mie-Verlag: Berlin, Germany, 1984. [Google Scholar]
- Ehrenfest, P.; Kamerlingh Onnes, H. Simplified deduction of the formula from the theory of combinations which Planck uses as the basis of his radiation-theory. Proc. Kon. Ned. Akad. Wetensch. 1914, 17, 870–873. Available online: http://www.dwc.knaw.nl/DL/publications/PU00012735.pdf (accessed on 2 June 2021). [CrossRef] [Green Version]
- Gallavotti, G. Ergodicity: A Historical Perspective. Equilibrium and Nonequilibrium. Available online: https://arxiv.org/pdf/1604.04239.pdf (accessed on 13 March 2018).
- Badino, M. Was There a Statistical Turn? The Interaction between Mechanics and Probability in Boltzmann’s Theory of Non Equilibrium (1872–1877). 2006. Available online: http://philsci-archive.pitt.edu/2878/1/Was_There_a_Statistical_Turn.pdf. (accessed on 2 June 2021).
- Boltzmann, L. Wissenschaftliche Abhandlungen; Hasenöhrl, F., Ed.; (I. Bd. (1865–1874), II. Bd. (1875–1881), III. Bd. (1882–1905)); Barth: Leipzig, Germany, 1909; Available online: https://phaidra.univie.ac.at/view/o:63647 (accessed on 2 June 2021).
- Pólya, G. Sur quelques points de la théorie des probabilités. Ann. L’Inst. Henri Poincaré 1930, 1, 117–161. [Google Scholar]
- Boltzmann, L. Selected Works; (orig. title: Л. Бoльцман, Избранные труды (oтв. ред. Л. С. Пoлак), Мoсква: «Наука» 1984 (Серия «Классики науки»)); Polak, L., Ed.; Nauka: Moscow, Russia, 1984. (In Russian) [Google Scholar]
- Bach, A. Indistinguishable particles: Definitions and implications. Phys. Lett. A 1900, 151, 1–6. [Google Scholar] [CrossRef]
- Bach, A. The Maxwell-Boltzmann Distribution Derived from Bose-Einstein Statistics. Phys. Lett. A 1988, 134, 1–3. [Google Scholar] [CrossRef]
- Boltzmann, L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wiener Ber. 1872, 66, 275–370. [Google Scholar] [CrossRef]
- Schöpf, H.-G. Von Kirchhoff bis Planck. Theorie der Wärmestrahlung in Historisch-Kritischer Darstellung; (WTB Texte und Studien 193); Akademie-Verlag: Berlin, Germany, 1978. [Google Scholar]
- Costantini, D.; Garibaldi, U.; Penco, M.A. Ludwig Boltzmann alla nascita della meccanica statistica. Statistica 1996, 3, 279–300. [Google Scholar]
- Ehrenfest, P.T. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen; Klein, F., Müller, C., Eds.; Teubner: Leipzig, Germany, 1907–1914; (Vol. IV Mechanik, Pt. D, No. 6, Art. 32. En: The Conceptual Foundations of the Statistical Approach in Mechanics; Moravcsik, M.M., Ed.; Cornell Univ. Press: Ithaca, NY, USA, 1959; Dover: New York, NY, USA, 1990); Available online: https://gdz.sub.uni-goettingen.de/id/PPN360619320 (accessed on 2 June 2021).
- Lorentz, H.A. Alte und neue Fragen der Physik. 1910. (Wolfskehlvorlesungen, Elaborated by M. Born). Available online: https://www.lorentz.leidenuniv.nl/IL-publications/sources/Lorentz_PZ_1910.pdf (accessed on 2 June 2021).
- Poisson, S.D. Recherches sur la Probabilité des Jugements en Matière Criminelle et en Matière Civile; Bachelier: Paris, France, 1837; Available online: http://opacplus.bsb-muenchen.de/title/BV001641673 (accessed on 2 June 2021).
- Enders, P. Is Classical Statistical Mechanics Self-Consistent? Progr. Phys. 2007, 3, 85–87, (A Paper of Honour of C. F. von Weizsäcker, 1912–2007). Available online: http://www.allbusiness.com/science-technology/physics/5518225-1.html (accessed on 2 June 2021).
- Klein, M.J. Max Planck and the Beginnings of the Quantum Theory. Arch. Hist. Exact Sci. 1962, 1, 459–479. Available online: https://www.equipes.lps.u-psud.fr/Montambaux/histoire-physique/planck-history-klein-1962.pdf (accessed on 2 June 2021). [CrossRef]
- Kirchhoff, G. Über das Verhältnis zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann. Phys. 1860, 19, 275–301, (Reprint in: Schöpf 1978, pp. 131–151; En.: On the relation between the radiating and absorbing powers of different bodies for light and heat (F. Guthrie, transl.). Philos. Mag. 1860, 20, 1–21). Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18601850205 (accessed on 2 June 2021). [CrossRef] [Green Version]
- Planck, M. Entropie und Temperatur strahlender Wärme. Ann. Phys. 1900, 1, 719–737, (Russ. in: Collected Works, 1975, pp. 234–C248). [Google Scholar] [CrossRef] [Green Version]
- Enders, P. Equality and Identity and (In) distinguishability in Classical and Quantum Mechanics from the Point of View of Newton’s Notion of State. ICFAI Univ. J. Phys. 2008, 1, 71–78. Available online: http://www.iupindia.org/108/IJP_Classical_and_Quantum_Mechanics_71.html (accessed on 2 June 2021).
- Planck, M. Selected Works; Polak, L.S., Ed.; (orig. title: М.Планк, Избранные труды (oтв. ред. Л. С. Пoлак); (Серия «Классики науки»); Nauka: Moscow, Russia, 1975. (In Russian) [Google Scholar]
- Planck, M. Über eine Verbesserung der Wienschen Spektralgleichung. Verh. Dtsch. Phys. Gesell. 1900, 2, 202, (talk dated 19.10.1900; reprints in: Planck, Die Ableitung der Strahlungsgesetze, 1997, No. IV; Schöpf, Von Kirchhoff bis Planck, 1978, pp. 175–178; En. in: D. ter Haar, The Old Quantum Theory, 1967, No. 1). [Google Scholar]
- Wien, W. Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie. Sitzungsber. Kgl. Preuß. Akad. D. Wiss. 1893, 1, 55–62. Available online: https://digilib.bbaw.de/digitallibrary/digilib.html?fn=silo10/Bibliothek.tiff/10-sitz/1893-1/tif/&pn=70 (accessed on 2 June 2021).
- Rayleigh, L. Remarks upon the law of complete radiation. Philos. Mag. 1900, 49, 301, (No. LIII, 539–540). Available online: https://zenodo.org/record/1430616#.X_LKnjSg9hE (accessed on 2 June 2021). [CrossRef]
- Jeans, J.H. A Comparison between Two Theories of Radiation. Nature 1905, 72, 1865, (July 27, 293–194). Available online: https://zenodo.org/record/2061049#.X_IBjTSg9hE (accessed on 2 June 2021). [CrossRef] [Green Version]
- Hettner, G. Die Bedeutung von Rubens Arbeiten für die Plancksche Strahlungsformel. Naturwissenschaften 1922, 10, 1033–1038. Available online: https://www.deutsche-digitale-bibliothek.de/item/6E77HON7KHL7GMUUBKR66AGWIVRU7UCG (accessed on 2 June 2021). [CrossRef]
- Planck, M. Zur Geschichte der Auffindung des physikalischen Wirkungsquantums. Naturwissenschaften 1943, 31, 153–157. Available online: https://booksc.org/book/6591721/30ebe5 (accessed on 2 June 2021). [CrossRef]
- Kangro, H. Vorgeschichte des Planckschen Strahlungsgesetzes: Messungen und Theorien der spektralen Energieverteilung bis zur Begründung der Quantenhypothese; Steiner: Wiesbaden, Germany, 1970; (En.: Early history of Planck’s radiation law (transl. by R. E. W. Maddison in collab. with the author), London: Taylor & Francis 1976). [Google Scholar]
- Mehra, J.; Rechenberg, H. The Historical Development of Quantum Theory; Springer: New York, NY, USA, 1982; Volume 1 Pt 1. [Google Scholar]
- Dougal, R.C. The presentation of the Planck radiation formula (tutorial). Phys. Educ. 1976, 11, 438–443. [Google Scholar] [CrossRef]
- Rubens, H.; Kurlbaum, F. Anwendung der Methode der Reststrahlen zur Prüfung des Strahlungsgesetzes. Ann. Phys. 1901, 309, 649–666. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19013090402 (accessed on 2 June 2021). [CrossRef] [Green Version]
- Badino, M. The Bumpy Road. Max Planck from Radiation Theory to the Quantum (1896–1906); Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Wien, W. Ueber die Energievertheilung im Emissionsspectrum eines schwarzen Körpers., Wied. Ann. 1897, 58, 662–669. (En.: On the Division of Energy in the Emission-Spectrum of a Black Body (transl. by J. Burke). Philos. Mag. 1897, 43, 214–220. Available online: http://myweb.rz.uni-augsburg.de/~eckern/adp/history/historic-papers/1896_294_662-669.pdf (accessed on 2 June 2021). [CrossRef]
- Thiesen, M. Ueber das Gesetz der schwarzen Strahlung. VDPG 1900, 2, 65–70. [Google Scholar]
- Planck, M. Nobel Lecture. 2 June 1920. Available online: https://www.nobelprize.org/prizes/physics/1918/planck/lecture/ (accessed on 2 June 2021).
- Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 1905, 17, 132–148, (Reprint in: J. Renn (Ed.), Einstein’s Annalen Papers, 2005, pp. 164–181; En.: On a Heuristic Point of View about the Creation and Conversion of Light, in: D. ter Haar, The Old Quantum Theory, 1967, pp. 91–107, J. Stachel (Ed.), Einstein’s Miraculous Year, 1998, Pt. 4). Available online: http://users.physik.fu-berlin.de/~kleinert/files/eins_lq.pdf (accessed on 2 June 2021). [CrossRef]
- Einstein, A. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann. Phys. 1907, 22, 180–190, (Correction: p. 800; Reprint in: J. Renn (Ed.), Einstein’s Annalen Papers, 2005, pp. 280–291 resp. 296). Available online: http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1907_22_800.pdf (accessed on 2 June 2021). [CrossRef] [Green Version]
- Planck, M. Wahlvorschlag für Albert Einstein (1879–1955) zum OM. 12 Juni 1913. (signed by Planck, Nernst, Rubens, E. Warburg, AAW II–IIIa, Bd. 19, Bl. 37–37). In Physiker über Physiker. Wahlvorschläge zur Aufnahme von Physikern in die Berliner Akademie 1870 bis 1929 von Hermann von Helmholtz bis Erwin Schrödinger; Kirsten, C., Körber, H.-G., Eds.; Akademie-Verlag: Berlin, Germany, 1975; pp. 201–203. [Google Scholar]
- Kragh, H. Photon: New Light on an Old Name. 2014. Available online: https://arxiv.org/ftp/arxiv/papers/1401/1401.0293.pdf (accessed on 8 February 2021).
- Paul, H. Auf dem Weg zur Quantentheorie: Die Erfindung des Hohlraums und ihre Folgen. Schr. Sudetendtsch. Akad. Wiss. Künste 2015, 34, 135–140. [Google Scholar]
- Ehrenfest, P. Zur Planckschen Strahlungstheorie. Phys. Z. 1906, 7, 2–6. Available online: https://www.lorentz.leidenuniv.nl/IL-publications/sources/Ehrenfest_06e.pdf (accessed on 2 June 2021).
- Planck, M. Die Ableitung der Strahlungsgesetze. (1895–1900) Sieben Abhandlungen aus dem Gebiete der Elektromagnetischen Strahlungstheorie; (Ostwalds Klassiker 206); Geest & Portig: Leipzig, Germany, 1997; (Frankfurt a. Main Thun: Deutsch, 2001). [Google Scholar]
- Passon, O.; Grebe-Ellis, J. Planck’s Radiation Law, the Light Quantum, and the Prehistory of Indistinguishability in the Teaching of Quantum Mechanics. Available online: http://arxiv.org/abs/1703.05635v1 (accessed on 17 March 2017).
- Darrigol, O. Statistics and Combinatorics in Early Quantum Theory, II: Early Symptoma of Indistinguishability and Holism. Hist. Stud. Phys. Biol. Sci. 1991, 21, 237–298. Available online: https://www.jstor.org/stable/27757664 (accessed on 2 June 2021). [CrossRef]
- Ehrenfest, P. Welche Züge der Lichtquantenhypothese spielen in der Theorie der Wärmestrahlung eine wesentliche Rolle? Ann. Phys. 1911, 341, 91–118. Available online: https://zenodo.org/record/1424215#.YCkYVzKg9hE (accessed on 2 June 2021). [CrossRef] [Green Version]
- Rosenfeld, L. La première phase de l’évolution de la Théorie des Quanta. Osiris 1936, 2, 149–196. Available online: https://www.jstor.org/stable/301555 (accessed on 2 June 2021). [CrossRef]
- Kries, J.V. Die Principien der Wahrscheinlichkeitsrechnung: Eine Logische Untersuchung; Mohr: Freiburg, Germany, 1886; Available online: https://archive.org/details/dieprincipiende00kriegoog (accessed on 2 June 2021).
- Truesdell, C. Essays in the History of Mechanics; Springer: New York, NY, USA, 1968; p. 88. [Google Scholar]
- Debye, P. Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung. Ann. Phys. 1910, 338, 1427–1434. Available online: https://booksc.xyz/dl/375637/2369bd (accessed on 2 June 2021). [CrossRef] [Green Version]
- Spałek, J. The Bose-Einstein Statistics: Remarks on Debye, Natanson, and Ehrenfest Contributions and the Emergence of Indistinguishability Principle for Quantum Particles. Stud. Hist. Sci. 2020, 19, 423–441. Available online: https://ruj.uj.edu.pl/xmlui/handle/item/254915 (accessed on 2 June 2021). [CrossRef]
- Natanson, W. Über die statistische Theorie der Strahlung. Phys. Z. 1911, 12, 659–666, (En.: On the statistical theory of radiation. Bull. Acad. Sci. Crac. A 1911, 134–148). [Google Scholar]
# | k1 | k2 | k3 | k4 | k5 | k6 | k7 | P |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 7 |
2 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 42 |
3 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 42 |
4 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 42 |
5 | 0 | 0 | 0 | 0 | 1 | 1 | 5 | 105 |
6 | 0 | 0 | 0 | 0 | 1 | 2 | 4 | 210 |
7 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 105 |
8 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 105 |
9 | 0 | 0 | 0 | 1 | 1 | 1 | 4 | 140 |
10 | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 420 |
11 | 0 | 0 | 0 | 1 | 2 | 2 | 2 | 140 |
12 | 0 | 0 | 1 | 1 | 1 | 1 | 3 | 105 |
13 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 210 |
14 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 42 |
15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
# | w0 | w1 | w2 | w3 | w4 | w5 | w6 | w7 | P |
---|---|---|---|---|---|---|---|---|---|
15 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 |
2 | 5 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 42 |
3 | 5 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 42 |
4 | 5 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 42 |
14 | 1 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 42 |
5 | 4 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 105 |
7 | 4 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 105 |
8 | 4 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 105 |
12 | 2 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 105 |
9 | 3 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 140 |
11 | 3 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 140 |
6 | 4 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 210 |
13 | 2 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 210 |
10 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enders, P. Statistical Mechanics and Thermodynamics: Boltzmann’s versus Planck’s State Definitions and Counting †. Entropy 2021, 23, 875. https://doi.org/10.3390/e23070875
Enders P. Statistical Mechanics and Thermodynamics: Boltzmann’s versus Planck’s State Definitions and Counting †. Entropy. 2021; 23(7):875. https://doi.org/10.3390/e23070875
Chicago/Turabian StyleEnders, Peter. 2021. "Statistical Mechanics and Thermodynamics: Boltzmann’s versus Planck’s State Definitions and Counting †" Entropy 23, no. 7: 875. https://doi.org/10.3390/e23070875
APA StyleEnders, P. (2021). Statistical Mechanics and Thermodynamics: Boltzmann’s versus Planck’s State Definitions and Counting †. Entropy, 23(7), 875. https://doi.org/10.3390/e23070875