A New Universal Domain Adaptive Method for Diagnosing Unknown Bearing Faults
Abstract
:1. Introduction
- The proposed model breaks the assumption of the shared label space in the field of mechanical fault diagnosis and proposes the universal domain to solve the fault type samples that did not appear in the training dataset.
- The proposed network innovatively proposes to rely on source domain samples to generate feature centers of each fault type and determine the fault type based on the distance between the feature extracted from the sample and the feature center.
- The model introduces Wasserstein distance to measure the marginal probability distribution between different data, and three optimization equations are added to the network training to optimize the model to alleviate the negative transfer problem of the network when solving unknown domains.
2. Research Methods
2.1. Proposed Framework
2.1.1. Classification Loss
2.1.2. Feature Loss
2.1.3. Distance Loss
2.2. Training Process
3. Experimental Verification
3.1. Experimental Dataset Description
3.2. Compared Methods Description
3.3. Experimental Results Display
3.3.1. CWRU Task Set Result Analysis
3.3.2. SDUST Task Set Result Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notations
Bs | Batch size |
Cd | Feature center dimension |
D | Dropout_rate |
Es | Epochs in general training |
Et | Epochs in testing |
f1 | First-level feature dimension |
f2 | Second-level feature dimension |
hθ(x(i)) | The probability set of various fault types for the i-th sample |
I[·] | An index function used to represent the value of the probability |
Lr | Learning rate |
m | The number of samples in the source domain |
ot | The tiny noise used for network training |
oc | The c-th features of the feature center |
S | Sample dimension |
x(i) | The input signal of the i-th sample |
The feature coefficient of the extracted target domain | |
xc | The c-th features of the feature extraction |
xsi | The i-th features extracted from the target domain |
xti | The i-th features extracted from the source domain |
Xt | The target domain |
Xs | The source domain |
y(i) | The probability output corresponding to the i-th sample |
The set of all possible joint distributions that combine the P1 and P2 distributions | |
θ1,θ2,...,θk | The parameters of the model |
θC | The parameters of the classifier |
θG | The parameters of the feature extractor |
λ | The feature coefficient of the tiny noise |
γ | The joint distribution of each possible fault type |
References
- Jia, S.; Wang, J.; Zhang, X.; Han, B.K. A Weighted Subdomain Adaptation Network for Partial Transfer Fault Diagnosis of Rotating Machinery. Entropy 2021, 23, 424. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.Z.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Liu, R.; Meng, G.; Yang, B.; Sun, C.; Chen, X. Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine. IEEE Trans. Ind. Inform. 2017, 13, 1310–1320. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, N.; Peng, W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans. Ind. Electron. 2019, 66, 3208–3216. [Google Scholar] [CrossRef]
- Lu, S.; Qian, G.; He, Q.; Liu, F. In Situ Motor Fault Diagnosis Using Enhanced Convolutional Neural Network in an Embedded System. IEEE Sens. J. 2020, 20, 8287–8296. [Google Scholar] [CrossRef]
- Jiang, H.; Li, X.; Shao, H.; Ke, Z. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network. Meas. Sci. Technol. 2018, 29, 065107. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Li, X.; Liang, T.C. Rolling bearing fault detection using continuous deep belief network with locally linear embedding. Comput. Ind. 2018, 96, 27–39. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ding, Q. Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks. IEEE Trans. Ind. Electron. 2018, 66, 5525–5534. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Song, L.; Cui, L. A novel convolutional neural network based fault recognition method via image fusion of multivibration-signals. Comput. Ind. 2019, 105, 182–190. [Google Scholar] [CrossRef]
- Mao, W.; Sun, B.; Wang, L. A New Deep Dual Temporal Domain Adaptation Method for Online Detection of Bearings Early Fault. Entropy 2021, 23, 162. [Google Scholar] [CrossRef]
- Jiao, J.; Zhao, M.; Lin, J.; Ding, C. Classifier Inconsistency-Based Domain Adaptation Network for Partial Transfer Intelligent Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 5965–5974. [Google Scholar] [CrossRef]
- Ge, P.; Ren, C.X.; Dai, D.Q.; Yan, H. Domain adaptation and image classification via deep conditional adaptation network. arXiv preprint 2020, arXiv:2006.07776. [Google Scholar]
- Li, H.; Huang, J.; Yang, X.; Luo, J.; Zhang, L.; Pang, Y. Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks. Entropy 2020, 22, 851. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Lei, Y.G.; Xing, S.; Yan, T.; Li, N. Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data. IEEE Trans. Ind. Electron. 2019, 66, 7316–7325. [Google Scholar] [CrossRef]
- Singh, J.; Azamfar, M.; Ainapure, A.; Lee, J. Deep learning-based cross-domain adaptation for gearbox fault diagnosis under variable speed conditions. Meas. Sci. Technol. 2020, 31, 055601. [Google Scholar] [CrossRef]
- Hasan, M.J.; Sohaib, M.; Kim, J.M. A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under Inconsistent Working Conditions. Sensors 2020, 20, 7205. [Google Scholar] [CrossRef]
- Cao, Z.; Long, M.; Wang, J.; Jordan, M. Partial Transfer Learning with Selective Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2724–2732. [Google Scholar]
- Zhang, J.; Ding, Z.; Li, W.; Ogunbona, P. Importance Weighted Adversarial Nets for Partial Domain Adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 8156–8164. [Google Scholar]
- Li, X.; Zhang, W. Deep Learning-Based Partial Domain Adaptation Method on Intelligent Machinery Fault Diagnostics. IEEE Trans. Ind. Electron. 2020, 99, 1. [Google Scholar] [CrossRef]
- Jia, S.; Wang, J.; Han, B.; Zhang, G.; Wang, X.Y.; He, J.T. A Novel Transfer Learning Method for Fault Diagnosis Using Maximum Classifier Discrepancy with Marginal Probability Distribution Adaptation. IEEE Access 2020, 99, 1. [Google Scholar] [CrossRef]
- Busto, P.P.; Gall, J. Open Set Domain Adaptation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 754–763. [Google Scholar]
- Saito, K.; Yamamoto, S.; Ushiku, Y.; Harada, T. Open set domain adaptation by backpropagation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 153–168. [Google Scholar]
- You, K.; Long, M.; Cao, Z.; Wang, J.M.; Jordan, M.I. Universal Domain Adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2720–2729. [Google Scholar]
- Tao, S.; Zhang, T.; Yang, J.; Wang, X.Q.; Lu, W. Bearing fault diagnosis method based on stacked autoencoder and softmax regression. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 6331–6335. [Google Scholar]
- Saito, K.; Watanabe, K.; Ushiku, Y.; Harada, T. Maximum Classifier Discrepancy for Unsupervised Domain Adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3723–3732. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875. [Google Scholar]
- Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 2015, 64, 100–131. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks. Neural Netw. 2020, 129, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, G.; Wang, J.; Wang, X.Y.; Jia, S.X.; He, J.T. Research and application of regularized sparse filtering model for intelligent fault diagnosis under large speed fluctuation. IEEE Access 2020, 8, 39809–39818. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; An, Z.; Jiang, X.X.; Qian, W.W.; Ji, S.S. Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines. Neurocomputing 2019, 15, 53–65. [Google Scholar] [CrossRef]
- Laurens, V.D.M.; Geoffrey, H. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Dataset | Class Label | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
CWRU | Fault location | N/A | IF | IF | IF | BF | BF | BF | OF | OF | OF |
Fault size (mil) | 0 | 7 | 14 | 21 | 7 | 14 | 21 | 7 | 14 | 21 | |
SDUST | Fault location | IF | IF | N/A | OF | OF | RF | RF | ROF | ROF | |
Fault size (mm) | 0.2 | 0.4 | 0 | 0.2 | 0.4 | 0.2 | 0.4 | 0.2 | 0.4 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Epochs in general training Es | 2000 | Sample dimension S | 1200 |
Epochs in testing Et | 500 | Feature center dimension Cd | 16 |
Batch size Bs | 10 | First-level feature dimension f1 | 512 |
Dropout_rate D | 0.1 | Second-level feature dimension f2 | 128 |
Learning rate Lr | 0.001 | the feature coefficient of the tiny noise λ | 0.05 |
CWRU | SDUST | ||||||
---|---|---|---|---|---|---|---|
Task Name | Transfer (Speed) | Source Classes | Unknown Class | Task Name | Transfer (Speed) | Source Classes | Unknown Class |
A1 | 1730 → 1750 | 1, 2, 3, 5, 8 | 6 | B1 | 1500 → 1800 | 1, 3, 4, 6, 7 | 8 |
A2 | 1730 → 1750 | 1, 2, 3, 6, 9 | 8 | B2 | 1500 → 1800 | 2, 3, 4, 5, 7 | 9 |
A3 | 1730 → 1750 | 1, 4, 5, 7, 10 | 2 | B3 | 1500 → 1800 | 1, 3, 5, 6, 8 | 7 |
A4 | 1730 → 1750 | No unknown fault | B4 | 1500 → 1800 | No unknown fault | ||
A5 | 1730 → 1772 | 1, 2, 3, 5, 8 | 6 | B5 | 1500 → 2000 | 1, 3, 4, 6, 7 | 8 |
A6 | 1730 → 1772 | 2, 3, 5, 7, 9 | 1 | B6 | 1500 → 2000 | 1, 3, 4, 5, 6 | 8 |
A7 | 1730 → 1772 | 4, 5, 6, 8, 9 | 3 | B7 | 1500 → 2000 | 1, 3, 5, 6, 8 | 2 |
A8 | 1750 → 1730 | 1, 2, 3, 5, 8 | 6 | B8 | 1800 → 1500 | 1, 3, 4, 6, 7 | 8 |
A9 | 1750 → 1730 | 1, 4, 5, 7, 10 | 2 | B9 | 1800 → 1500 | 1, 2, 3, 4, 8 | 6 |
A10 | 1772 → 1730 | 1, 2, 4, 5, 8 | 10 | B10 | 2000 → 1500 | 1, 3, 4, 6, 8 | 9 |
Method | Baseline | L1/2-SF | WD-MCD | DA-BNSAE | Proposed |
---|---|---|---|---|---|
A1 | 54.67 (±12.4) | 82.2 (±6.3) | 80.08 (±2.6) | 78.23 (±0.4) | 82.98 (±2.1) |
A2 | 43.2 (±8.4) | 73.68 (±5.1) | 75.02 (±3.2) | 74.22 (±2.1) | 80.32 (±1.4) |
A3 | 57.46 (±3.7) | 70.31 (±8.2) | 82.38 (±5.0) | 73.65 (±3.4) | 90.31 (±2.7) |
A4 | 72.56 (±6.2) | 98.83 (±1.7) | 99.43 (±0.5) | 98.53 (±1.6) | 99.88 (±0.2) |
A5 | 55.07 (±4.6) | 69.45 (±1.2) | 80.2 (±0.4) | 71.07 (±2.7) | 80.96 (±6.5) |
A6 | 47.9 (±3.0) | 69.67 (±3.2) | 72.15 (±3.8) | 65.2 (±2.3) | 77.38 (±9.3) |
A7 | 33.3 (±6.4) | 64.78 (±11.7) | 73.06 (±5.4) | 64.93 (±15.1) | 92.37 (±2.2) |
A8 | 48.47 (±10.7) | 74.32 (±3.6) | 79.6 (±3.3) | 75.54 (±6.5) | 84.31 (±3.8) |
A9 | 48.78 (±7.1) | 71.56 (±5.9) | 70.34 (±8.4) | 67.3 (±7.9) | 88.01 (±4.5) |
A10 | 44.7 (±15.3) | 55.62 (±5.5) | 71.62 (±7.8) | 65.07 (±13.6) | 85.96 (±7.4) |
Average | 50.61 | 73.04 | 78.39 | 73.37 | 86.25 |
Task | Baseline | L1/2-SF | WD-MCD | DA-BNSAE | Proposed |
---|---|---|---|---|---|
B1 | 44.8 (±3.4) | 79.44 (±4.6) | 77.32 (±2.7) | 77.18 (±3.9) | 80.04 (±2.1) |
B2 | 41.45 (±7.5) | 72.72 (±2.4) | 67.26 (±5.6) | 68.67 (±7.2) | 83.06 (±5.7) |
B3 | 47.67 (±4.3) | 71.32 (±8.5) | 76.84 (±3.0) | 76.57 (±2.9) | 81.96 (±4.3) |
B4 | 70.42 (±3.4) | 97.53 (±1.4) | 99.44 (±0.9) | 98.94 (±1.1) | 99.76 (±0.5) |
B5 | 45.07 (±6.3) | 75.97 (±3.2) | 78.67 (±9.6) | 64.87 (±4.1) | 84.72 (±5.9) |
B6 | 46.3 (±7.2) | 67.05 (±10.5) | 76.1 (±13.7) | 58.31 (±17.3) | 79.9 (±3.5) |
B7 | 52.78 (±3.8) | 72.14 (±7.2) | 76.18 (±9.4) | 72.23 (±4.5) | 90.7 (±2.9) |
B8 | 51.21 (±5.2) | 78.3 (±5.9) | 81.04 (±2.1) | 64.01 (±7.9) | 90.44 (±4.7) |
B9 | 44.23 (±6.5) | 49.52 (±17.8) | 64.4 (±14.5) | 60.03 (±15.9) | 82.64 (±7.9) |
B10 | 39.78 (±6.3) | 57.23 (±5.6) | 45.63 (±6.7) | 57.22 (±9.0) | 73.62 (±12.3) |
Average | 48.37 | 72.12 | 74.29 | 69.80 | 84.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Liu, G.; Wang, J.; Bao, H.; Zhang, Z.; Zhang, X.; Han, B. A New Universal Domain Adaptive Method for Diagnosing Unknown Bearing Faults. Entropy 2021, 23, 1052. https://doi.org/10.3390/e23081052
Yan Z, Liu G, Wang J, Bao H, Zhang Z, Zhang X, Han B. A New Universal Domain Adaptive Method for Diagnosing Unknown Bearing Faults. Entropy. 2021; 23(8):1052. https://doi.org/10.3390/e23081052
Chicago/Turabian StyleYan, Zhenhao, Guifang Liu, Jinrui Wang, Huaiqian Bao, Zongzhen Zhang, Xiao Zhang, and Baokun Han. 2021. "A New Universal Domain Adaptive Method for Diagnosing Unknown Bearing Faults" Entropy 23, no. 8: 1052. https://doi.org/10.3390/e23081052
APA StyleYan, Z., Liu, G., Wang, J., Bao, H., Zhang, Z., Zhang, X., & Han, B. (2021). A New Universal Domain Adaptive Method for Diagnosing Unknown Bearing Faults. Entropy, 23(8), 1052. https://doi.org/10.3390/e23081052