Multi-Scale Permutation Entropy: A Potential Measure for the Impact of Sleep Medication on Brain Dynamics of Patients with Insomnia
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Multi-Scale Permutation Entropy Analysis
2.3. Research Framework
- (1)
- Except for the first sleep cycle, each sleep cycle includes a continuous NREM and a continuous REM cycle. The first cycle does not have any requirement for REM sleep stage;
- (2)
- For each NREM cycle in the sleep cycle, it must start from Stage 2 and last no less than 15 min. If NREM sleep is interrupted during awake stage, this will not last for over 5 min and ensure the cycle is not interrupted;
- (3)
- The REM cycle shall be kept for more than 5 min and extended for as long as possible. The awake interruption shall not exceed 1 min.
2.4. Statistical Analysis
3. Results
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, CT, USA, 2014. [Google Scholar]
- Nisha, A.R.; Punjabi, N.M. Obstructive Sleep Apnea, Sleepiness, and Glycemic Control in Type 2 Diabetes. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2019, 15, 749–755. [Google Scholar]
- Kuehn, B.M. Sleep Duration Linked to Cardiovascular Disease. Circulation 2019, 139, 2483–2484. [Google Scholar] [CrossRef]
- Yan, B.; Zhao, B.; Fan, Y.; Yang, J.; Ma, X. The association between sleep efficiency and diabetes mellitus in community-dwelling individuals with or without sleep-disordered breathing. J. Diabetes 2019, 12, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chow, H.I.; Li, L.; Li, X.H.; Chee, H.; Gabor, S.; Wang, A.H.; Jia, F.J.; Zhang, Y.; Xiang, Y.T. Sleep duration and patterns in Chinese patients with diabetes: A meta-analysis of comparative studies and epidemiological surveys. Perspect. Psychiatr. Care 2019, 55, 1–10. [Google Scholar] [CrossRef] [PubMed]
- ONDŘEJ, L. Sleep apnea and cardiovascular disease. Cas. Lek. Ceskych 2019, 158, 178–184. [Google Scholar]
- Alan, R.T.; Sanja, J. How broken sleep promotes cardiovascular disease. Nature 2019, 566, 329–330. [Google Scholar]
- Ronen, B.; Shaye, K.; Marina, P.; Daniel, R.; Lital, K.B.; Barbara, S.; Irena, L.; Tamara, K.; Carmit, L.; Dekel, S.; et al. Increased Risk for Cancer in Young Patients with Severe Obstructive Sleep Apnea. Respir. Int. Rev. Thorac. Dis. 2019, 97, 15–23. [Google Scholar]
- Miguel, S.L.; Teresa, P.W.M.; Fernando, G.C.L.; Henry, O.; Elena, C.; Fernanda, T.M.; Teresa, G.; Rosario, M.; Javier, P.E.; Abdel, E.H.; et al. Obstructive sleep apnea and nocturnal hypoxemia are associated with an increased risk of lung cancer. Sleep Med. 2019, 63, 41–45. [Google Scholar]
- Sillah, A.; Watson, N.F.; Gozal, D.; Phipps, A.I. Obstructive sleep apnea severity and subsequent risk for cancer incidence. Prev. Med. Rep. 2019, 15, 100886. [Google Scholar] [CrossRef]
- Pan, T.W.; Liu, S.Z.; Ke, S.F.; Wang, E.; Jiang, Y.Q.; Wang, S.S. Association of obstructive sleep apnea with cognitive decline and age among non-demented older adults. Neurosci. Lett. 2021, 756, 135955. [Google Scholar] [CrossRef] [PubMed]
- Kamble, N.; Yadav, R.; Lenka, A.; Kumar, K.; Nagaraju, B.C.; Pal, P.K. Impaired sleep quality and cognition in patients of Parkinson’s disease with REM sleep behavior disorder: A comparative study. Sleep Med. 2019, 62, 1–5. [Google Scholar] [CrossRef]
- Short, M.A.; Chee, M.W.L. Adolescent sleep restriction effects on cognition and mood. Prog. Brain Res. 2019, 246, 55–71. [Google Scholar] [PubMed]
- Raissa, A.; Himanshu, R.; Hrayr, A.; Ashima, S. Impact of traumatic brain injury on sleep: An overview. Nat. Sci. Sleep 2019, 11, 131–140. [Google Scholar]
- McKeon, A.B.; Stocker, R.P.J.; Germain, A. Traumatic brain injury and sleep disturbances in combat-exposed service members and veterans: Where to go next? NeuroRehabilitation 2019, 45, 163–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baglioni, C.; Battagliese, G.; Feige, B.; Spiegelhalder, K.; Nissen, C.; Voderholzer, U.; Lombardo, C.; Riemann, D. Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies. J. Affect. Disord. 2011, 135, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Breslau, N.; Roth, T.; Rosenthal, L.; Andreski, P. Sleep disturbance and psychiatric disorders: A longitudinal epidemiological study of young Adults. Biol. Psychiatry 1996, 39, 411–418. [Google Scholar] [CrossRef]
- Kim, E.S.; Hershner, S.D.; Strecher, V.J. Purpose in life and incidence of sleep disturbances. J. Behav. Med. 2015, 38, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.L.; Wang, S.B.; Zhong, B.L.; Zhang, L.; Ungvari, G.S.; Chee, H.N.; Li, L.; Chiu, H.F.K.; Lok, G.K.I.; Lu, J.P.; et al. The prevalence of insomnia in the general population in China: A meta-analysis. PLoS ONE 2017, 12, e0170772. [Google Scholar] [CrossRef]
- Javaheri, S.; Redline, S. Insomnia and Risk of Cardiovascular Disease. Chest 2017, 152, 435–444. [Google Scholar] [CrossRef]
- Neubauer, D.N.; Seithikurippu, R.P.P.; Spence, D.W.; Buttoo, K.; Monti, J.M. Pharmacotherapy of Insomnia. J. Cent. Nerv. Syst. Dis. 2018, 10, 1179573518770672. [Google Scholar] [CrossRef] [Green Version]
- Lähteenmäki, R.; Neuvonen, P.J.; Puustinen, J.; Vahlberg, T.; Partinen, M.; Räihä, I.; Kivelä, S.L. Withdrawal from long-term use of zopiclone, zolpidem and temazepam may improve perceived sleep and quality of life in older adults with primary insomnia. Basic Clin. Pharmacol. Toxicol. 2019, 124, 330–340. [Google Scholar] [CrossRef]
- Plante, D.T.; Goldstein, M.R.; Cook, J.D.; Smith, R.; Riedner, B.A.; Rumble, M.E.; Jelenchick, L.; Roth, A.; Tononi, G.; Benca, R.M.; et al. Effects of oral temazepam on sleep spindles during non-rapid eye movement sleep: A high-density EEG investigation. Eur. Neuropsychopharmacol. 2015, 25, 1600–1610. [Google Scholar] [CrossRef] [Green Version]
- Foroughinia, S.; Hessami, K.; Asadi, N.; Foroughinia, L.; Hadianfard, M.; Hajihosseini, A.; Pirasteh, N.; Vossoughi, N.; Vafaei, H.; Faraji, A.; et al. Effect of Acupuncture on Pregnancy-Related Insomnia and Melatonin: A Single-Blinded, Randomized, Placebo-Controlled Trial. Nat. Sci. Sleep 2020, 2020, 271–278. [Google Scholar] [CrossRef]
- Gautam, S.; Sandra, P.; Abhishek, S.; Raj, M.S.; Jeswin, J.; Sushil, K.; Unnikrishnan, M.K. Effects of sedative-hypnotics on sleep quality among patients with insomnia: Evidence from an observational, pre-post study in India. Health Qual. Life Outcomes 2020, 18, 212. [Google Scholar]
- Song, Y.S.; Kelly, M.R.; Fung, C.H.; Dzierzewski, J.M.; Grinberg, A.M.; Mitchell, M.N.; Karen, J.; Martin, J.L.; Alessi, C.A. Change in Dysfunctional Sleep-Related Beliefs is Associated with Changes in Sleep and Other Health Outcomes Among Older Veterans With Insomnia: Findings From a Randomized Controlled Trial. Ann. Behav. Med. Publ. Soc. Behav. Med. 2021, kaab030. [Google Scholar] [CrossRef] [PubMed]
- Reite, M.; Buysse, D.; Reynolds, C.; Mendelson, W. The use of polysomnography in the evaluation of insomnia. Sleep 1995, 18, 55–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, F.C.; Maloney, S.; Driver, H.S. A comparison of subjective estimates of sleep with objective polysomnographic data in healthy men and women. J. Psychosom. Res. 1999, 47, 335–341. [Google Scholar] [CrossRef]
- Ma, Y.; Michael, R.G.; Roger, B.D.; Gloria, Y.Y. Profile of subjective-objective sleep discrepancy in patients with insomnia and sleep apnea. J. Clin. Sleep Med. 2021, 9348. [Google Scholar] [CrossRef]
- Sakamoto, T.; Uchimura, N.; Mukai, M.; Mizuma, H.; Shirakawa, S.I.; Nakazawa, Y. Efficacy of L-846 in patients with insomnia: Evaluation by polysomnography. Psychiatry Clin. Neurosci. 1998, 52, 156–157. [Google Scholar] [CrossRef] [PubMed]
- Liborio, P.; Franco, F.; Arianna, S.; Cristina, S.M.; Vincenzo, P.; Mariano, R.; Giovanni, T.M. Is insomnia a neurophysiological disorder? The role of sleep EEG microstructure. Brain Res. Bull. 2004, 63, 377–383. [Google Scholar]
- Ma, Y.; Hou, F.Z.; Albert, C.Y.; Andrew, C.A.; Fan, L.; Peng, C.K. Symbolic dynamics of electroencephalography is associated with the sleep depth and overall sleep quality in healthy adults. Phys. A Stat. Mech. Its Appl. 2019, 513, 22–31. [Google Scholar] [CrossRef]
- Christoph, B.; Bernd, P. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar]
- Deng, B.; Liang, L.; Li, S.N.; Wang, R.F.; Yu, H.T.; Wang, J.; Wei, X.L. Complexity extraction of electroencephalograms in Alzheimer’s disease with weighted-permutation entropy. Chaos 2015, 25, 043105. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.J.; Ouyang, G.X.; Li, Z.; Li, Q.L.; Wang, L.; Li, X.L. Weighted-Permutation Entropy Analysis of Resting State EEG from Diabetics with Amnestic Mild Cognitive Impairment. Entropy 2016, 18, 307. [Google Scholar] [CrossRef] [Green Version]
- Bandt, C.; Hornero, R. A New Kind of Permutation Entropy Used to Classify Sleep Stages from Invisible EEG Microstructure. Entropy 2017, 19, 197. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.L.; Zhou, M.N.; Niu, Y.; Li, C.G.; Cao, R.; Wang, B.; Yan, P.F.; Ma, Y.; Xiang, J. Epileptic Seizure Prediction Based on Permutation Entropy. Front. Comput. Neurosci. 2018, 12, 55. [Google Scholar] [CrossRef]
- Zhao, J.; Ding, M.; Tong, Z.; Han, J.X.; Li, X.L.; Kang, J.N. Feature exaction and classification of autism spectrum disorder children related electroencephalographic signals based on entropy. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = J. Biomed. Eng. = Shengwu Yixue Gongchengxue Zazhi 2019, 36, 183–188. [Google Scholar]
- Hou, F.Z.; Zhang, L.L.; Qin, B.K.; Gaggioni, G.; Liu, X.Y.; Vandewalle, G. Changes in EEG permutation entropy in the evening and in the transition from wake to sleep. Sleep 2021, 44, zsaa226. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Kemp, B.; Zwinderman, A.H.; Tuk, B.; Kamphuisen, H.A.; Oberyé, J.J. Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG. IEEE Trans. Bio-Med. Eng. 2000, 47, 1185–1194. [Google Scholar] [CrossRef]
- Thomas, R.J.; Mietus, J.E.; Peng, C.K.; Geoffrey, G.; Daly, R.W.; Goldberger, A.L.; Gottlieb, D.J. Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method. Sleep 2007, 30, 1756–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.F.; Liu, S.L.; Gu, D.; Sun, X.; Wang, L.; Wei, Y.; Zhang, H.L. Improved multi-scale entropy and it’s application in rolling bearing fault feature extraction. Measurement 2020, 152, 107361. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhu, Z.J.; Zhao, W.N.; Sun, Y.; Wen, D.; Xie, Y.Y.; Liu, X.Y.; Niu, H.J.; Han, Y. Decreased resting-state brain signal complexity in patients with mild cognitive impairment and Alzheimer’s disease: A multiscale entropy analysis. Biomed. Opt. Express 2018, 9, 1916–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, C.Y.; Wang, S.J.; Lai, K.L.; Tsai, C.F.; Yang, C.H.; Hwang, J.P.; Lo, M.T.; Huang, N.E.; Peng, C.K.; Fuh, J.L. Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer’s disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 47, 52–61. [Google Scholar]
- Mizuno, T.; Takahashi, T.; Cho, R.Y.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clin. Neurophysiol. 2010, 121, 1438–1446. [Google Scholar] [CrossRef] [Green Version]
- Bosl, W.; Tierney, A.; Helen, T.F.; Nelson, C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 2011, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, M.; Swaab, D.F.; Kok, J.H.; Hofman, M.A.; Witting, W.; Van, G.W.A. Circadian rhythms and the suprachiasmatic nucleus in perinatal development, aging and Alzheimer’s disease. Prog. Brain Res. 1992, 93, 151–162. [Google Scholar]
Group | Dependent Variable | Factors | p | Standardized Coefficient |
---|---|---|---|---|
HC (the second night) | MPE | age | 0.010 | 0.298 |
gender | 0.964 | 0.005 | ||
Insomnia patients (the Temazepam night) | MPE | age | 0.875 | 0.040 |
gender | 0.919 | 0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Chen, Y.; Yang, Q.; Hou, F.; Liu, X.; Ma, Y. Multi-Scale Permutation Entropy: A Potential Measure for the Impact of Sleep Medication on Brain Dynamics of Patients with Insomnia. Entropy 2021, 23, 1101. https://doi.org/10.3390/e23091101
Guo Y, Chen Y, Yang Q, Hou F, Liu X, Ma Y. Multi-Scale Permutation Entropy: A Potential Measure for the Impact of Sleep Medication on Brain Dynamics of Patients with Insomnia. Entropy. 2021; 23(9):1101. https://doi.org/10.3390/e23091101
Chicago/Turabian StyleGuo, Yanping, Yingying Chen, Qianru Yang, Fengzhen Hou, Xinyu Liu, and Yan Ma. 2021. "Multi-Scale Permutation Entropy: A Potential Measure for the Impact of Sleep Medication on Brain Dynamics of Patients with Insomnia" Entropy 23, no. 9: 1101. https://doi.org/10.3390/e23091101
APA StyleGuo, Y., Chen, Y., Yang, Q., Hou, F., Liu, X., & Ma, Y. (2021). Multi-Scale Permutation Entropy: A Potential Measure for the Impact of Sleep Medication on Brain Dynamics of Patients with Insomnia. Entropy, 23(9), 1101. https://doi.org/10.3390/e23091101