Causality in Schwinger’s Picture of Quantum Mechanics
Abstract
:1. Introduction: Causal Structures vs. Quantum Mechanics
2. The Geometric Theory of Causality
3. Algebraic Causality: A Categorical Approach
3.1. Borel Causal Sets
- ⪯ is a partial order.
- ≪ is areflexive, i.e., not .
- ≪ is finer that ⪯, that is, if , then ; ; .
- iff and not ;
3.2. The Categorical Approach to Causality: Causal Structures as Borel Categories
4. Analytic Causality: Groupoids and Quantum Mechanics
4.1. The Incidence Algebra of a Causal Relation and Sorkin’s Theorem
4.2. Causal Structures in Groupoids and Triangular Operator Algebras
- Diffuse case. is isomorphic to .
- Discrete case. is isomorphic to a diagonal algebra of a matrix algebra.
- Mixed case. is isomorphic to .
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Regopoulos, M. The principle of causation as a basis of the scientific method. Manag. Sci. 1966, 12, 135–139. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Ibort, A.; Marmo, G. A gentle introduction to Schwinger’s picture of quantum mechanics. Mod. Phys. Lett. A 2018, 33, 1850122. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics I: Groupoids. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950119. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics II: Algebras and observables. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950136. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics III: The statistical interpretation. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950165. [Google Scholar] [CrossRef] [Green Version]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics IV: Composite systems. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050058. [Google Scholar] [CrossRef] [Green Version]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050054. [Google Scholar] [CrossRef] [Green Version]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L.; Zampini, A. A quantum route to the classical Lagrangian formalism. Mod. Phys. Lett. A 2021, 36, 2150091. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L. Schwinger’s picture of quantum mechanics: 2-groupoids and symmetries. J. Geom. Mech. 2021, 13, 333–354. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L.; Zampini, A. Feynman’s propagator in Schwinger’s picture of Quantum Mechanics. Mod. Phys. Lett. A 2021, 36, 2150187. [Google Scholar] [CrossRef]
- Schwinger, J. Quantum Kinematics and Dynamics; Westview Press (Perseus Books Group): Boulder, CO, USA, 1991. [Google Scholar]
- Kronheimer, E.H.; Penrose, R. On the Structure of Causal Spaces. Math. Proc. Camb. Phil. Soc. 1967, 63, 481–501. [Google Scholar] [CrossRef]
- Sorkin, R. Causal Sets: Discrete Gravity. In Lectures on Quantum Gravity; Gomberoff, A., Marolf, D., Eds.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Dribus, B.F. On the Axioms of Causal Set Theory. arXiv 2013, arXiv:1311.2148. [Google Scholar]
- Haag, K.; Kastler, D. An algebraic approach to quantum field theory. J. Math. Phys. 1964, 5, 848. [Google Scholar] [CrossRef]
- Haag, R. Local Quantum Physics; Springer: Berlin/Heidelberg; Germany: NewYork, NY, USA, 1992. [Google Scholar]
- Feynman, R.P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R.P. Feynman’s Thesis: A New Approach to Quantum Theory. In The Principle of Least Action in Quantum Mechanics; World Scientific: Singapore, 1942. [Google Scholar]
- Abramsky, S.; Coecke, B. A categorical semantics of quantum protocols. In Proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS’04), Turku, Finland, 17 July 2004. [Google Scholar]
- Baez, J. Quantum Quandaries: A Category-Theoretic Perspective. In The Structural Foundations of Quantum Gravity; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Benini, M.; Perin, M.; Schenkel, A.; Woike, L. Categorification of algebraic quantum field theories. Lett. Math. Phys. 2021, 111, 1–49. [Google Scholar] [CrossRef]
- Döring, A.; Isham, C. What is a Thing? Topos Theory in the Foundations of Physics. New Structures for Physics. In Lecture Notes in Physics; Coecke, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 813. [Google Scholar]
- Heunen, C.; Landsman, N.; Spitters, B. Bohrification. In Deep Beauty: Understanding the Quantum World through Mathematical Innovation; Halvorson, H., Ed.; Cambridge University: Cambridge, UK, 2011; pp. 271–314. [Google Scholar]
- Resende, P. On the geometry of physical measurements: Topological and algebraic aspects. arXiv 2020, arXiv:2005.00933. [Google Scholar]
- Resende, P. An abstract theory of physical measurements. Found. Phys. 2021, 51, 108. [Google Scholar] [CrossRef]
- Saigo, H. Category Algebras and States on Categories. Symmetry 2021, 13, 1172. [Google Scholar] [CrossRef]
- Saigo, H. Quantum Fields as Category Algebras. Symmetry 2021, 13, 1727. [Google Scholar] [CrossRef]
- Marmo, G.; Preziosi, B. Objective Existence and Relativity Groups; Symmetries in Science XI; Springer: Dordrecht, The Netherlands, 2004; pp. 445–458. [Google Scholar]
- Marmo, G.; Preziosi, B. The structure of space-time: Relativity groups. Int. J. Geom. Methods Mod. Phys. 2006, 3, 591–603. [Google Scholar] [CrossRef]
- Zeeman, E.C. Causality implies the Lorentz Group. J. Math. Phys. 1964, 5, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Connes, A.; Rovelli, C. Von Neumann algebra automorphisms and time versus thermodynamics relation in general covariant quantum theories. Class. Quantum Grav. 1994, 11, 2899. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Yuan, W. Kadison-Singer algebras: Hyperfinite case. PNAS 2010, 107, 838–1843. [Google Scholar] [CrossRef] [Green Version]
- Kadison, R.; Singer, I. Triangular operator algebras, fundamentals and hyperreducible theory. Am. J. Math. 1960, 82, 227–259. [Google Scholar] [CrossRef]
- Minguzzi, E. Lorentzian causality theory. Living Rev. Relativ. 2019, 22, 1–202. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B. Semi-Riemannian Geometry; Academic Press: San Diego, CA, USA, 1983. [Google Scholar]
- Minguzzi, E.; Sánchez, M. The causal hierarchy of spacetimes. arXiv 2008, arXiv:gr-qc/0609119. [Google Scholar]
- Bautista, A.; Ibort, A.; Lafuente, J. On the space of lightrays and a reconstruction theorem by Low. Class. Quant. Grav. 2014, 31, 075020. [Google Scholar] [CrossRef] [Green Version]
- Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R. Spacetime as a causal set. Phys. Rev. Lett. 1987, 59, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Dugas, M.; Herden, D.; Rebrovich, J. Indepcomposable ideals of finitary incidence algebras. J. Pure Appl. Algebra 2020, 224, 106336. [Google Scholar] [CrossRef]
- Sorkin, R. Indecomposable Ideals in Incidence Algebras. Mod. Phys. Lett. A 2003, 18, 2491–2499. [Google Scholar] [CrossRef] [Green Version]
- Sorkin, R. Spacetime and causal sets. In Relativity and Gravitation: Classical and Quantum, Proceedings of the SILARG VII Conference); World Scientific: Singapore, 1991; pp. 150–173. [Google Scholar]
- Coecke, B.; Lal, R. Causal Categories: Relativistically Interacting Processes. Found. Phys. 2013, 43, 458–501. [Google Scholar] [CrossRef] [Green Version]
- Kissinger, A.; Uijlen, S. A categorical semantics for causal structure. Log. Methods Comput. Sci. 2019, 15, 1–48. [Google Scholar]
- Ciaglia, F.M.; Cosmo, F.D.; Ibort, A.; Marmo, G. Evolution of Classical and Quantum states in the Groupoid Picture of Quantum Mechanics. Entropy 2020, 22, 1292. [Google Scholar] [CrossRef]
- Dixmier, J. Sous-anneaux abéliens maximaux dans les facteurs de type fini. Ann. Math. 1954, 59, 279–286. [Google Scholar]
- Dixmier, J. Les Algèbres D’Opérateurs dans L’Espace Hilbertien; Gauthier-Villars: Paris, France, 1957. [Google Scholar]
- Sinclair, A.; Smith, R. Finite von Neumann and Masas ((London Mathematical Society Lecture Note Series, Series Number 351)); Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Besnard, F. Causality and Noncommutative Geometry. Proc. Sci. Front. Fundam. Phys. 2014, 14, 132. [Google Scholar]
- Eckstein, M.; Franco, N. Causal structure for noncommutative geometry. Proc. Sci. Front. Fundam. Phys. 2014, 14, 138. [Google Scholar]
- Eckstein, M. The geometry of noncommutative spacetimes. Universe 2017, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Streater, R.F.; Wightman, A.S. PCT, Spin and Statistics, and All That; Princeton University Press: Princeton, NJ, USA, 1964. [Google Scholar]
- Duck, I.; Sudarshan, E.C.G.; Wightman, A.S. Pauli and the Spin-Statistics Theorem. Am. J. Phys. 1999, 67, 742–746. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L.; Zampini, A. Causality in Schwinger’s Picture of Quantum Mechanics. Entropy 2022, 24, 75. https://doi.org/10.3390/e24010075
Ciaglia FM, Di Cosmo F, Ibort A, Marmo G, Schiavone L, Zampini A. Causality in Schwinger’s Picture of Quantum Mechanics. Entropy. 2022; 24(1):75. https://doi.org/10.3390/e24010075
Chicago/Turabian StyleCiaglia, Florio M., Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo, Luca Schiavone, and Alessandro Zampini. 2022. "Causality in Schwinger’s Picture of Quantum Mechanics" Entropy 24, no. 1: 75. https://doi.org/10.3390/e24010075
APA StyleCiaglia, F. M., Di Cosmo, F., Ibort, A., Marmo, G., Schiavone, L., & Zampini, A. (2022). Causality in Schwinger’s Picture of Quantum Mechanics. Entropy, 24(1), 75. https://doi.org/10.3390/e24010075