The Law of Entropy Increase and the Meissner Effect
Abstract
:1. Introduction
2. The History of the Law of Entropy Increase
2.1. The Irreversibility Is Needed for the Impossibility of a Perpetuum Mobile
2.2. The Centuries-Old Belief in the Impossibility of a Perpetuum Mobile
3. The Struggle between Thermodynamic-Energy and Atomistic–Kinetic Worldviews
3.1. The Difference in the Understanding of Irreversibility between Scientists of the 19th and 20th Centuries
3.2. The Law of Chaos Increase
4. The Assumption of Molecular Disorder Belong to Our Empirical Rather Than a Priori Knowledge
4.1. The Assumption of Molecular Disorder Is Needed for the Impossibility of an Useful Perpetuum Mobile
4.2. The Chaotic of the Nyquist Current as a Consequence of the Assumption of Molecular Disorder
4.3. Quantization and the Persistent Current
4.4. The Average Value of the Langevin Force Can Be Nonzero Due to the Quantization
4.5. The Persistent Voltage
4.6. The Persistent Current Observed at a Nonzero Resistance Refutes Experimentally the Assumption of Molecular Disorder
5. The Meissner Effect
5.1. Perfect Conductivity and Superconductivity
5.2. The Meissner Effect Is a Special Case of the Flux Quantization
5.3. The Meissner Effect Puzzle
5.4. Contradiction with Elementary Logic
5.5. Contradiction with the Law of Energy Conservation
5.6. No Work Can Be Performed during Any Phase Transition
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ginzburg, V.L.; Landau, L.D. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 1950, 20, 1064–1076. [Google Scholar]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175. [Google Scholar] [CrossRef] [Green Version]
- Meissner, W.; Ochsenfeld, R. Ein neuer Effekt bei Eintritt der Supraleitfahigkeit. Naturwiss 1933, 21, 787. [Google Scholar] [CrossRef]
- Deaver, B.S., Jr.; Fairbank, W.M. Experimental Evidence for Quantized Flux in Superconducting Cyclinders. Phys. Rev. Lett. 1961, 7, 43–46. [Google Scholar] [CrossRef]
- Doll, R.; Nabauer, M. Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring. Phys. Rev. Lett. 1961, 7, 51–52. [Google Scholar] [CrossRef]
- Little, W.A.; Parks, R.D. Observation of Quantum Periodicity in the Transition Temperature of a Superconducting Cylinder. Phys. Rev. Lett. 1962, 9, 9. [Google Scholar] [CrossRef]
- Abrikosov, A.A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 1957, 5, 1174. [Google Scholar]
- Huebener, R.P. Magnetic Flux Structures in Superconductors; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1979. [Google Scholar]
- Hirsch, J.E. Inconsistency of the conventional theory of superconductivity. EPL 2020, 130, 17006. [Google Scholar] [CrossRef]
- Hirsch, J.E. Joule heating in the normal-superconductor phase transition in a magnetic field. Physica C 2020, 576, 1353687. [Google Scholar] [CrossRef]
- Hirsch, J.E. Thermodynamic inconsistency of the conventional theory of superconductivity. Int. J. Mod. Phys. B 2020, 34, 2050175. [Google Scholar] [CrossRef]
- Nikulov, A.V. Dynamic processes in superconductors and the laws of thermodynamics. Physica C 2021, 589, 1353934. [Google Scholar] [CrossRef]
- Shoenberg, D. Superconductivity; Cambridge Univ. Press: London, UK, 1952. [Google Scholar]
- Keesom, W.H.; Kok, J.A. Further calorimetric experiments on thallium. Physica 1934, 1, 595. [Google Scholar] [CrossRef]
- Carnot, S. Reflections on the Motive Power of Heat and on Machines Fitted to Develop that Power; J. Wiley and Sons: New York, NY, USA, 1897. [Google Scholar]
- Smoluchowski, M. Gultigkeitsgrenzen des zweiten Hauptsatzes der Warmetheorie. In Vortrage uber kinetische Theorie der Materie und der Elektrizitat; Mathematische Vorlesungen an der Universitat Gottingen, VI; B.G.Teubner: Leipzig, Germany; Berlin, Germany, 1914; p. 87. [Google Scholar]
- Lieb, E.H.; Yngvason, J. The physics and mathematics of the second law of thermodynamics. Phys. Rep. 1999, 310, 1–96. [Google Scholar] [CrossRef] [Green Version]
- Eddington, A.S. The Nature of the Physical World; Macmillan: New York, NY, USA, 1948. [Google Scholar]
- Einstein, A. On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat. Ann. Der Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.C. Theory of Heat, ‘Tait’s Thermodynamics’. Nature 1878, 17, 257. [Google Scholar] [CrossRef] [Green Version]
- Lebowitz, J.L. Statistical Mechanics: A Selective Review of Two Central Issues. Rev. Mod. Phys. 1999, 71, S346. [Google Scholar] [CrossRef] [Green Version]
- Weaver, C.G. In Praise of Clausius Entropy: Reassessing the Foundations of Boltzmannian Statistical Mechanics. Found. Phys. 2021, 51, 59. [Google Scholar] [CrossRef]
- Lorentz, H.A. Uber das Gleichgewicht der lebendigen Kraft unter Gasmolekulen. Wien. Berichte 1887, 95, 115–152. [Google Scholar]
- Planck, M. Scientific Autobiography and Other Papers; Williams and Norgate LTD: London, UK, 1950. [Google Scholar]
- Boltzmann, L. Lectures on Gas Theory; Translated by Stephen G. Brush. Dover: New York, NY, USA, 1964. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley Publishing Company: Reading, MA, USA, 1963. [Google Scholar]
- Leggett, A.J.; Garg, A. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 1985, 54, 857. [Google Scholar] [CrossRef] [Green Version]
- Mooij, J.E. Quantum mechanics: No moon there. Nature Phys. 2010, 6, 401. [Google Scholar] [CrossRef]
- Knee, G.C.; Kakuyanagi, K.; Yeh, M.C.; Matsuzaki, Y.; Toida, H.; Yamaguchi, H.; Saito, S.; Leggett, A.J.; Munro, W.J. A strict experimental test of macroscopic realism in a superconducting flux qubit. Nature Comm. 2016, 7, 13253. [Google Scholar] [CrossRef]
- Nikulov, A.V.; Sheehan, D.P. Special Issue “Quantum Limits to the Second Law of Thermodynamics”. Entropy 2004, 6, 1–232. [Google Scholar] [CrossRef]
- Langevin, P. On the Theory of Brownian Motion. C. R. Acad. Sci. Paris 1908, 146, 530–533. [Google Scholar]
- Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 1928, 32, 110–113. [Google Scholar] [CrossRef]
- Johnson, J.B. Thermal Agitation of Electricity in Conductors. Phys. Rev. 1928, 32, 97–109. [Google Scholar] [CrossRef]
- Gurtovoi, V.L.; Dubonos, S.V.; Nikulov, A.V.; Osipov, N.N.; Tulin, V.A. Dependence of the magnitude and direction of the persistent current on the magnetic flux in superconducting rings. JETP 2007, 105, 1157–1173. [Google Scholar] [CrossRef]
- Koshnick, N.C.; Bluhm, H.; Huber, M.E.; Moler, K.A. Fluctuation Superconductivity in Mesoscopic Aluminum Rings. Science 2007, 318, 1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlakov, A.A.; Gurtovoi, V.L.; Dubonos, S.V.; Nikulov, A.V.; Tulin, V.A. Little–Parks Effect in a System of Asymmetric Superconducting Rings. JETP Lett. 2007, 86, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Bleszynski-Jayich, A.C.; Shanks, W.E.; Peaudecerf, B.; Ginossar, E.; von Oppen, F.; Glazman, L.; Harris, J.G.E. Persistent Currents in Normal Metal Rings. Science 2009, 326, 272–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bluhm, H.; Koshnick, N.C.; Bert, J.A.; Huber, M.E.; Moler, K.A. Persistent Currents in Normal Metal Rings. Phys. Rev. Lett. 2009, 102, 136802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulik, I.O. Flux quantization in normal metal. JETP Lett. 1970, 11, 275–278. [Google Scholar]
- Nikulov, A.V. Bohm’s quantum potential and quantum force in superconductor. In AIP Conference Proceedings; Accardi, L., Adenier, G., Fuchs, C., Jaeger, G., Khrennikov, A.Y., Larsson, J., Stenholm, S., Eds.; American Institute of Physics: New York, NY, USA, 2009; Volume 1101, p. 134. [Google Scholar]
- Gurtovoi, V.L.; Antonov, V.N.; Nikulov, A.V.; Shaikhaidarov, R.S.; Tulin, V.A. Development of a Superconducting Differential Double Contour Interferometer. Nano Lett. 2017, 17, 6516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikulov, A.V. Quantum force in a superconductor. Phys. Rev. B 2001, 64, 012505. [Google Scholar] [CrossRef] [Green Version]
- Skospol, W.J.; Tinkham, M. Fluctuations near superconducting phase transition. Rep. Prog. Phys. 1975, 38, 1049–1097. [Google Scholar] [CrossRef]
- Tinkham, M. Introduction to Superconductivity; McGraw-Hill Book Company: New York, NY, USA, 1996. [Google Scholar]
- Kulik, I.O. Magnetic flux quantization in the normal state. Sov. Phys. JETP 1970, 31, 1172–1176. [Google Scholar]
- Vloeberghs, H.; Moshchalkov, V.V.; Van Haesendonck, C.; Jonckheere, R.; Bruynseraede, Y. Anomalous Little-Parks oscillations in mesoscopic loops. Phys. Rev. Lett. 1992, 69, 1268–1271. [Google Scholar] [CrossRef]
- Nikulov, A.V.; Zhilyaev, I.N. The Little-Parks Effect in an Inhomogeneous Superconducting Ring. J. Low Temp. Phys. 1998, 112, 227. [Google Scholar] [CrossRef]
- De Waele, A.T.A.M.; Kraan, W.H.; De Bruynouboter, R.; Taconis, K.W. On the DC Voltage across a Double Point Contact between Two Superconductors at Zero Applied DC Current in Situations in which the Junction is in the Resistive Region due to the Circulating Current of Flux Quantization. Physica 1967, 37, 114. [Google Scholar] [CrossRef]
- Dubonos, S.V.; Kuznetsov, V.I.; Nikulov, A.V. Segment of an Inhomogeneous Mesoscopic Loop as a DC Power Source. In Proceedings of the 10th International Symposium “NANOSTRUCTURES: Physics and Technology”, St. Petersburg, Russia, 17–21 June 2002; p. 350. [Google Scholar]
- Dubonos, S.V.; Kuznetsov, V.I.; Zhilyaev, I.N.; Nikulov, A.V.; Firsov, A.A. Observation of the external-ac-current-induced dc voltage proportional to the persistent current in superconducting loops. JETP Lett. 2003, 77, 371. [Google Scholar] [CrossRef] [Green Version]
- Gurtovoi, V.L.; Exarchos, M.; Antonov, V.N.; Nikulov, A.V.; Tulin, V.A. Multiple superconducting ring ratchets for ultrasensitive detection of non-equilibrium noises. Appl. Phys. Lett. 2016, 109, 032602. [Google Scholar] [CrossRef] [Green Version]
- Burlakov, A.A.; Gurtovoi, V.L.; Il’in, A.I.; Nikulov, A.V.; Tulin, V.A. Possibility of persistent voltage observation in a system of asymmetric superconducting rings. Phys. Lett. A 2012, 376, 2325. [Google Scholar] [CrossRef] [Green Version]
- Gurtovoi, V.L.; Il’in, A.I.; Nikulov, A.V.; Tulin, V.A. Weak dissipation does not result in the disappearance of the persistent current. Low Temp. Phys. 2010, 36, 974. [Google Scholar]
- Gurtovoi, V.L.; Antonov, V.N.; Exarchos, M.; Il’in, A.I.; Nikulov, A.V. The dc power observed on the half of asymmetric superconducting ring in which current flows against electric field. Physica C 2019, 559, 14–20. [Google Scholar] [CrossRef]
- Nikulov, A.V. Could ordinary quantum mechanics be just fine for all practical purposes? Quantum Stud. Math. Found. 2016, 3, 41. [Google Scholar] [CrossRef]
- Nikulov, A.V. The Meissner effect puzzle and the quantum force in superconductor. Phys. Lett. A 2012, 376, 3392–3397. [Google Scholar] [CrossRef] [Green Version]
- Nikulov, A.V. Quantum limits to the second law and breach of symmetry. arXiv 2005, arXiv:Cond-mat/0505508. [Google Scholar]
- Birge, N.O. Sensing a Small But Persistent Current. Science 2009, 326, 244–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landau, L.D. Theory of Superfluidity of Helium II. Zh. Eksp. Teor. Fiz. 1941, 11, 592–623. [Google Scholar] [CrossRef]
- Hirsch, J.E. Superconductivity Begins with H; World Scientific: Singapore, 2020. [Google Scholar]
- Hirsch, J.E. Superconductivity, what the H? The emperor has no clothes. arXiv 2020, arXiv:2001.09496. [Google Scholar]
- London, H. Phase-Equilibrium of Supraconductors in a Magnetic Field. Proc. R. Soc. Lond. A 1935, 152, 650. [Google Scholar]
- Hirsch, J.E. Electromotive Forces and the Meissner Effect Puzzle. J. Supercond. Nov. Magn. 2010, 23, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.E. Momentum of superconducting electrons and the explanation of the Meissner effect. Phys. Rev. B 2017, 95, 014503. [Google Scholar] [CrossRef] [Green Version]
- Gorter, C.J. Theory of Supraconductivity. Nature 1933, 132, 931. [Google Scholar] [CrossRef]
- Koizumi, H. Reversible superconducting-normal phase transition in a magnetic field and the existence of topologically protected loop currents that appear and disappear without Joule heating. EPL 2020, 131, 37001. [Google Scholar] [CrossRef]
- Nikulov, A.V. Comment on Reversible superconducting-normal phase transition in a magnetic field and the existence of topologically protected loop currents that appear and disappear without Joule heating by Koizumi Hiroyasu. EPL 2021, 71, 17002. [Google Scholar] [CrossRef]
- Capek, V.; Bok, J. A thought construction of working perpetuum mobile of the second kind. Czech. J. Phys. 1999, 49, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, D.P.; Glick, J.; Means, J.D. Steady-State Work by an Asymmetrically Inelastic Gravitator in a Gas: A Second Law Paradox. Found. Phys. 2000, 30, 1227–1256. [Google Scholar] [CrossRef]
- Weiss, P. Breaking the Law: Can quantum mechanics + thermodynamics = perpetual motion? Sci. News 2000, 158, 234. [Google Scholar] [CrossRef]
- Nikulov, A.; Sheehan, D. The Second Law Mystique. Entropy 2004, 6, 1–10. [Google Scholar] [CrossRef]
- Lee, J.W. Energy Renewal: Isothermal Utilization of Environmental Heat Energy with Asymmetric Structures. Entropy 2021, 23, 665. [Google Scholar] [CrossRef] [PubMed]
- Capek, V.; Sheehan, D. Challenges to the Second Law of Thermodynamics. Theory and Experiment; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Sheehan, D.P. First International Conference on Quantum Limits to the Second Law. AIP Conf. Proc. 2002, 643, 1–500. [Google Scholar]
- Sheehan, D.P. The Second Law of Thermodynamics: Foundations and Status. Found. Phys. 2007, 37, 1653–1797. [Google Scholar] [CrossRef]
- Sheehan, D.P. The Second Law of Thermodynamics: Status and Challenges. AIP Conf. Proc. 2011, 1411, 1–356. [Google Scholar]
- Keefe, P.D. Coherent Magneto-Caloric Effect Heat Engine Process Cycle. AIP Conf. Proc. 2002, 643, 213. [Google Scholar]
- Keefe, P.D. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductor Particles. Entropy 2004, 6, 116–127. [Google Scholar] [CrossRef]
- Keefe, P.D. Quantum limit to the second law by magneto-caloric effect, adiabatic phase transition of mesoscopic-size Type I superconductor particles. Physica E 2005, 29, 104–110. [Google Scholar] [CrossRef]
- Keefe, P.D. The second law of thermodynamics and quantum heat engines: Is the law strictly enforced? Physica E 2010, 42, 461–465. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikulov, A. The Law of Entropy Increase and the Meissner Effect. Entropy 2022, 24, 83. https://doi.org/10.3390/e24010083
Nikulov A. The Law of Entropy Increase and the Meissner Effect. Entropy. 2022; 24(1):83. https://doi.org/10.3390/e24010083
Chicago/Turabian StyleNikulov, Alexey. 2022. "The Law of Entropy Increase and the Meissner Effect" Entropy 24, no. 1: 83. https://doi.org/10.3390/e24010083
APA StyleNikulov, A. (2022). The Law of Entropy Increase and the Meissner Effect. Entropy, 24(1), 83. https://doi.org/10.3390/e24010083