Multi-Objective Constructal Design for Quadrilateral Heat Generation Body with Vein-Shaped High Thermal Conductivity Channel
Abstract
:1. Introduction
2. Model and Optimization Objectives
2.1. Quadrilateral Heat Generation Body Model
2.2. Maximum Temperature Difference
2.3. Entropy Generation Rate
3. Multi-Objective Constructal Designs
3.1. Design with a Complex Function
3.2. Design with NSGA-II
4. Conclusions
- 1.
- The optimal constructal can be gained by minimizing the complex function with the objectives of the MTD and the EGR. Compared to the initial structure, , and are reduced by 2.0%, 9.5% and 6.07%, respectively, while increased by 2.06%. The complex function of the two reflects the compromise between the maximum thermal resistance and the irreversible loss of heat transfer. The selection of the weighting coefficient has a great influence on the optimal constructal, and the optimal complex function gets smaller as the weighting coefficient of EGR decreases. Therefore, design with a complex function relies on the selection of an appropriate weighting coefficient.
- 2.
- The Pareto frontier includes the optimization results of different objectives, and when the weighting coefficient of complex function changes, the optimization results obtained will also be distributed in the Pareto frontier. The constructal design goes through the LINMAP decision methods is similar to that goes through the TOPSIS decision methods, and the corresponding decreased by 0.49% and 0.69% compared with the optimal result of , respectively, while the corresponding increases by 0.75% and 0.96%, respectively.
- 3.
- The deviation index of the optimization constructal obtained by TOPSIS decision methods is 0.127, which is better than other decision methods and objectives. Compared to the optimal construct with minimum MTD and minimum EGR, the optimal construct obtained by using NSGA-II and decision methods has a smaller deviation index and smaller conflict between the two objectives.
- 4.
- Constructal theory and NSGA-II are powerful tools for comprehensive thermal performance improvements of the high thermal conductivity channels. By increasing the optimization objectives, high thermal conductivity channels can be better used in engineering applications considering multiple design requirements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Area of the quadrilateral volume () | |
The area of material of the quadrilateral volume () | |
The area of material of the quadrilateral volume () | |
Width of branching links () | |
Width of the central link () | |
Half-height of quadrilateral volume () | |
Thermal conductivity of heat generation body () | |
Thermal conductivity of high thermal conductivity channel () | |
Base length of quadrilateral volume () | |
Starting point of th branching link (-) | |
Number of branches of the central high thermal conductivity material (-) | |
Heat generation rate per unit volume () | |
Temperature () | |
Length of th branching link () | |
Complex function | |
Weighting coefficient | |
Greek symbols | |
Porosity of thermal conductivity channel (-) | |
Angle defined in Figure 1 () | |
Height of th branching link () | |
Entropy generation rate () | |
Superscript | |
Dimensionless | |
Subscripts | |
Counting index | |
Optimum | |
Minimum | |
Abbreviations | |
HGB | Heat generation body |
HTCC | High thermal conductivity channel |
MTD | Maximum temperature difference |
EGR | Entropy generation rate |
MOO | Multi-objective optimization |
PPC | Pumping power consumption |
References
- Bejan, A. Entropy Generation through Heat and Fluid Flow; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Bejan, A. Entropy Generation Minimization; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Sahin, A.Z. Entropy production minimization in steady state heat conduction. Int. J. Phys. Sci. 2011, 6, 2826–2831. [Google Scholar]
- Sahin, A.Z. Critical insulation thickness for maximum entropy generation. Int. J. Exergy 2012, 9, 34–43. [Google Scholar] [CrossRef]
- Morriss, G.P.; Truant, D.P. Dissipation and entropy production in deterministic heat conduction of quasione-dimensional systems. Phys. Rev. E 2013, 86, 062144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimi, A.; Rikhtegar, F.; Sabaghan, A.; Roohi, E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy 2016, 101, 191–201. [Google Scholar] [CrossRef]
- Tian, X.W.; Wang, L.Q. Heat conduction in cylinders: Entropy generation and mathematical inequalities. Int. J. Heat Mass Transfer 2018, 121, 1137–1145. [Google Scholar] [CrossRef]
- Mansoor, S.B.; Yilbas, B.S. Entropy generation rate for stationary ballistic-diffusive heat conduction in a rectangular flake. J. Comput. Theor. Trans. 2021, 50, 87–101. [Google Scholar] [CrossRef]
- Aziz, A.; Khan, W.A. Minimum entropy generation design of a convectively heated pin fin with tip heat loss. Int. J. Exergy 2012, 9, 44–60. [Google Scholar] [CrossRef]
- Moghaddam, A.J.; Saedodin, S. Entropy generation minimization of pin fin heat sinks by means of metaheuristic methods. Indian J. Sci. Technol. 2013, 6, 4886–4893. [Google Scholar] [CrossRef]
- Khatami, S.; Rahbar, N. An analytical study of entropy generation in rectangular natural convective porous fins. Therm. Sci. Eng. Prog. 2019, 11, 142–149. [Google Scholar] [CrossRef]
- Bhat, P.; Katte, S.S. Entropy analysis of a simple rectangular radiating fin for space applications. Int. J. Heat Technol. 2020, 28, 708–714. [Google Scholar] [CrossRef]
- Hazarika, S.A.; Bhanja, D.; Nath, S. Fork-shaped constructal fin array design a better alternative for heat and mass transfer augmentation under dry, partially wet and fully wet conditions. Int. J. Therm. Sci. 2020, 152, 106329. [Google Scholar] [CrossRef]
- Giorgi, C.; Zull, F. Entropy rates and efficiency of convecting-radiating fins. Energies 2021, 14, 1643. [Google Scholar] [CrossRef]
- Farzaneh-Gord, M.; Ameri, H.; Arabkoohsar, A. Tube-in-tube helical heat exchangers performance optimization by entropy generation minimization approach. Appl. Therm. Eng. 2016, 108, 1279–1287. [Google Scholar] [CrossRef]
- Ebrahimi-Moghadam, A.; Moghadam, A.J. Optimal design of geometrical parameters and flow characteristics for Al2O3/water nanofluid inside corrugated heat exchangers by using entropy generation minimization and genetic algorithm methods. Appl. Therm. Eng. 2019, 149, 889–898. [Google Scholar] [CrossRef]
- Liu, J.X.; Jiang, Y.K.; Wang, B.Z.; He, S.M. Assessment and optimization assistance of entropy generation to air-side comprehensive performance of fin-and-flat tube heat exchanger. Int. J. Therm. Sci. 2019, 138, 61–74. [Google Scholar] [CrossRef]
- Zhang, K.Z.; Liu, M.; Zhao, Y.L.; Wang, C.Y.; Yan, J.J. Entropy generation versus transition time of heat exchanger during transient processes. Energy 2020, 200, 117490. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, R.Q.; Chen, D.M.; Chen, L.; Du, T.T.; Yu, H. Performance investigation and multi-objective optimization of helical baffle heat exchangers based on thermodynamic and economic analyses. Int. J. Heat Mass Transfer 2021, 176, 121489. [Google Scholar] [CrossRef]
- Naik, H.; Tiwari, S. Thermodynamic performance analysis of an inline fin-tube heat exchanger in presence of rectangular winglet pairs. Int. J. Mech. Sci. 2021, 193, 106148. [Google Scholar] [CrossRef]
- Xia, G.D.; Liu, R.; Wang, J.; Du, M. The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids. Int. Commun. Heat Mass Transfer 2016, 76, 256–264. [Google Scholar] [CrossRef]
- Lorenzini, G.; Mahian, O. Entropy in Nanofluids. Entropy 2018, 20, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurnia, J.C.; Lim, D.C.; Chen, L.J.; Sasmito, A.P. Entropy generation and heat transfer performance in microchannel cooling. Entropy 2019, 21, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, P.R.; Kumar, R.; Bharj, R.S. Optimization of the circular microchannel heat sink under viscous heating effect using entropy generation minimization method. Therm. Sci. Eng. Prog. 2019, 13, 100365. [Google Scholar] [CrossRef]
- Rasam, H.; Roy, P.; Savoldi, L.; Ghahremanian, S. Numerical assessment of heat transfer and entropy generation of a porous metal heat sink for electronic cooling applications. Energies 2020, 13, 3851. [Google Scholar] [CrossRef]
- Shahsavar, A.; Yari, O.; Askari, I.B. The entropy generation analysis of forward and backward laminar water flow in a plate-pin-fin heatsink considering three different splitters. Int. Commun. Heat Mass Transfer 2021, 120, 105026. [Google Scholar] [CrossRef]
- Bejan, A.; Lorente, S. Design with Constructal Theory; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Chen, L.G.; Feng, H.J.; Xie, Z.H.; Sun, F.R. Progress of constructal theory in China over the past decade. Int. J. Heat Mass Transfer 2019, 130, 393–419. [Google Scholar] [CrossRef]
- Bejan, A. Time and Beauty: Why Time Flies and Beauty Never Dies; World Scientific: Singapore, 2022. [Google Scholar]
- Bejan, A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transfer 1997, 40, 799–816. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Joneydi Shariatzadeh, O.; Moulod, M.; Nourazar, S.S. Phi and Psi shaped conductive routes for improved cooling in a heat generating piece. Int. J. Therm. Sci. 2014, 77, 66–74. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Parsa, H.; Najafian, J. Proposing an optimal tree-like design of highly conductive material configuration with unequal branches for maximum cooling a heat generating piece. Int. J. Heat Mass Transfer 2019, 142, 118422. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Rezaei, E. Proposing a new algorithm for the optimization of conduction pathways based on a recursive localization. Appl. Therm. Eng. 2019, 151, 146–153. [Google Scholar] [CrossRef]
- Chen, L.G.; Wu, W.J.; Feng, H.J. Constructal Design for Heat Conduction; Book Publisher International: London, UK, 2021. [Google Scholar]
- Bejan, A. Heat Transfer: Evolution, Design and Performance; John Wiley & Sons: New York, NY, USA, 2022. [Google Scholar]
- Hajmohammadi, M.R.; Shirani, E.; Salimpour, M.R.; Campo, A. Constructal placement of unequal heat sources on a plate cooled by laminar forced convection. Int. J. Therm. Sci. 2012, 60, 13–22. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Poozesh, S.; Campo, A.; Nourazar, S.S. Valuable reconsideration in the constructal design of cavities. Energy Convers. Manag. 2013, 66, 33–40. [Google Scholar] [CrossRef]
- Chen, L.G.; Yang, A.B.; Feng, H.J.; Ge, Y.L.; Xia, S.J. Constructal design progress for eight types of heat sinks. Sci. China Tech. Sci. 2020, 63, 879–911. [Google Scholar] [CrossRef]
- De Lima, Y.T.B.; Mateus das Neves Gomes, M.; Isoldi, L.A.; dos Santos, E.D.; Lorenzini, G.; Rocha, L.A.O. Geometric analysis through the constructal design of a sea wave energy converter with several coupled hydropneumatic chambers considering the oscillating water column operating principle. Appl. Sci. 2021, 11, 8630. [Google Scholar] [CrossRef]
- Bejan, A. Evolutionary design: Heat and fluid flow together. Int. Commun. Heat Mass Transfer 2022, 132, 105924. [Google Scholar] [CrossRef]
- Bejan, A. Boundary layers from constructal law. Int. Commun. Heat Mass Transfer 2020, 117, 102672. [Google Scholar] [CrossRef]
- Lorente, S. Vascular systems for the thermal and hygric management. Adv. Heat Transfer 2021, 53, 159–185. [Google Scholar]
- Bilal, S.; Rehman, M.; Noeiaghdam, S.; Ahmad, H.; Akgül, A. Numerical analysis of natural convection driven flow of a non-Newtonian power-law fluid in a trapezoidal enclosure with a U-shaped constructal. Energies 2021, 14, 5355. [Google Scholar] [CrossRef]
- Ojeda, J.A.; Messina, S.; Vázquez, E.E.; Méndez, F. Geometry optimization of top metallic contacts in a solar cell using the constructal design method. Energies 2020, 13, 3349. [Google Scholar] [CrossRef]
- Pinto, V.T.; Rocha, L.A.O.; dos Santosa, E.D.; Isoldi, L.A. Numerical analysis of stiffened plates subjected to transverse uniform load through the constructal design method. Eng. Sol. Mech. 2022, 10, 99–108. [Google Scholar] [CrossRef]
- Ghodoossi, L.; Eǧrican, N. Conductive cooling of triangular shaped electronics using constructal theory. Energy Convers. Manag. 2004, 45, 811–828. [Google Scholar] [CrossRef]
- Da Silva, A.K.; Vasile, C.; Bejan, A. Dics cooled with high-conductivity inserts that extend inward from the perimeter. Int. J. Heat Mass Transfer 2004, 47, 4257–4263. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Feng, H.J.; Chen, L.G.; You, J.; Xie, Z.H. Constructal design of an arrow-shaped high thermal conductivity channel in a square heat generation body. Entropy 2020, 22, 475. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Rasouli, E.; Elmi, M.A. Geometric optimization of a highly conductive insert intruding an annular fin. Int. J. Heat Mass Transfer 2020, 146, 118910. [Google Scholar] [CrossRef]
- Li, Y.L.; Feng, M.L. Optimal design of conductive natural branched pathways for cooling a heat-generating volume. Heat Transfer 2021, 50, 2571–2591. [Google Scholar] [CrossRef]
- Ghodoossi, L. Entropy generation rate in uniform heat generating area cooled by conducting paths: Criterion for rating the performance of constructal designs. Energy Convers. Manag. 2004, 45, 2951–2969. [Google Scholar] [CrossRef]
- Tescari, S.; Mazet, N.; Neveu, P. Constructal theory through thermodynamics of irreversible processes framework. Energy Convers. Manag. 2011, 52, 3176–3188. [Google Scholar] [CrossRef]
- You, J.; Feng, H.J.; Chen, L.G.; Xie, Z.H. Constructal design of nonuniform heat generating area based on triangular elements: A case of entropy generation minimization. Int. J. Therm. Sci. 2019, 139, 403–412. [Google Scholar] [CrossRef]
- Feng, H.J.; You, J.; Chen, L.G.; Ge, Y.L.; Xia, S.J. Constructal design of a non-uniform heat generating disc based on entropy generation minimization. Eur. Phys. J. Plus 2020, 135, 257. [Google Scholar] [CrossRef]
- Ribeiro, P.; Queiros-Condé, D. On the entropy production of the elemental construct of the constructal designed plate generating heat. Int. J. Therm. Sci. 2019, 145, 106043. [Google Scholar] [CrossRef]
- Zhu, H.W.; Chen, L.G.; Ge, Y.L.; Feng, H.J. Constructal entropy generation rate minimization of heat conduction for leaf-shaped quadrilateral heat generation body. Eur. Phys. J. Plus 2022, 137, 275. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liao, S.; Liu, G. Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making. Int. J. Electr. Power Energy Syst. 2015, 64, 167–175. [Google Scholar] [CrossRef]
- Fergani, Z.; Morosuk, T.; Touil, D. Exergy-based multi-objective optimization of an organic Rankine cycle with a zeotropic mixture. Entropy 2021, 23, 954. [Google Scholar] [CrossRef]
- Teng, S.; Feng, Y.Q.; Hung, T.C.; Xi, H. Multi-objective optimization and fluid selection of different cogeneration of heat and power systems based on organic Rankine cycle. Energies 2021, 14, 4967. [Google Scholar] [CrossRef]
- Baghernejad, A.; Anvari-Moghaddam, A. Exergoeconomic and environmental analysis and Multi-objective optimization of a new regenerative gas turbine combined cycle. Appl. Sci. 2021, 11, 11554. [Google Scholar] [CrossRef]
- Xie, T.; Xia, S.; Wang, C. Multi-objective optimization of Braun-type exothermic reactor for ammonia synthesis. Entropy 2022, 24, 52. [Google Scholar] [CrossRef]
- Arora, R.; Kaushik, S.C.; Kumar, R.; Arora, R. Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making. Int. J. Electr. Power Energy Syst. 2015, 74, 25–35. [Google Scholar] [CrossRef]
- Li, R.J.; Grosu, L.; Queiros-Conde, D. Multi-objective optimization of stirling engine using finite physical dimensions thermodynamics (FPDT) method. Energy Convers. Manag. 2016, 124, 517–527. [Google Scholar] [CrossRef]
- Patel, V.; Savsani, V.; Mudgal, A. Many-objective thermodynamic optimization of Stirling heat engine. Energy 2017, 125, 629–642. [Google Scholar] [CrossRef]
- Dai, D.D.; Yuan, F.; Long, R.; Liu, Z.C.; Liu, W. Performance analysis and multi-objective optimization of a Stirling engine based on MOPSOCD. Int. J. Therm. Sci. 2018, 124, 399–406. [Google Scholar] [CrossRef]
- Nazemzadegan, M.R.; Kasaeian, A.; Toghyani, S.; Ming, T.Z. Multi-objective optimization in a finite time thermodynamic method for dish-Stirling by branch and bound method and MOPSO algorithm. Front Energy 2020, 14, 649–665. [Google Scholar] [CrossRef] [Green Version]
- Rostami, M.; Assareh, E.; Moltames, R.; Jafarinejad, T. Thermo-economic analysis and multi-objective optimization of a solar dish Stirling engine. Energy Sources Part A 2021, 43, 2861–2877. [Google Scholar] [CrossRef]
- Shah, P.; Saliya, P.; Raja, B.; Patel, V. A multiobjective thermodynamic optimization of a nanoscale Stirling engine operated with Maxwell-Boltzmann gas. Heat Tran. Asian. Res. 2019, 48, 1913–1932. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; You, J.; Feng, H.J.; Chen, L.G. A multi-objective study on the constructal design of non-uniform heat generating disc cooled by radial- and dendritic-pattern cooling channels. Sci. China Tech. Sci. 2020, 64, 729–744. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Feng, H.J.; Chen, L.G.; Ge, Y.L. Multi-objective constructal design for compound heat dissipation channels in a three-dimensional trapezoidal heat generation body. Int. Commun. Heat Mass Transfer 2021, 127, 105584. [Google Scholar] [CrossRef]
- Feng, H.J.; Tang, W.; Chen, L.G.; Shi, J.C.; Wu, Z.X. Multi-objective constructal optimization for marine condensers. Energies 2021, 14, 5545. [Google Scholar] [CrossRef]
- Feng, H.J.; Chen, L.G.; Xie, Z.J.; Tang, W.; Ge, Y.L. Multi-objective constructal design for a marine boiler considering entropy generation rate and power consumption. Energy Rep. 2022, 8, 1519–1527. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, S.Q.; Duan, X.B.; Liu, S.J.; Liu, J.P.; Hu, S. Multi-objective energy management for Atkinson cycle engine and series hybrid electric vehicle based on evolutionary NSGA-II algorithm using digital twins. Energy Convers. Manag. 2021, 230, 113788. [Google Scholar] [CrossRef]
- Wang, L.B.; Bu, X.B.; Li, H.S. Multi-objective optimization and off-design evaluation of organic Rankine cycle (ORC) for low-grade waste heat recovery. Energy 2020, 203, 117809. [Google Scholar] [CrossRef]
- Arora, R.; Kaushik, S.C.; Kumar, R.; Arora, R. Soft computing based multi-objective optimization of Brayton cycle power plant with isothermal heat addition using evolutionary algorithm and decision making. Appl. Soft Comput. 2016, 46, 267–283. [Google Scholar] [CrossRef]
Optimization Objectives | NSGA-II | ||||||
---|---|---|---|---|---|---|---|
Optimization Results | TOPSIS | LINMAP | Shannon Entropy | ||||
1.036 | 0.988 | 1.021 | 1.016 | 1.014 | 1.036 | ||
0.932 | 1.161 | 0.939 | 0.946 | 0.948 | 0.932 | ||
0.857 | 1.172 | 0.905 | 0.923 | 0.929 | 0.857 | ||
Deviation indexes [76] | 0.175 | 0.825 | 0.133 | 0.127 | 0.128 | 0.175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Chen, L.; Ge, Y.; Shi, S.; Feng, H. Multi-Objective Constructal Design for Quadrilateral Heat Generation Body with Vein-Shaped High Thermal Conductivity Channel. Entropy 2022, 24, 1403. https://doi.org/10.3390/e24101403
Zhu H, Chen L, Ge Y, Shi S, Feng H. Multi-Objective Constructal Design for Quadrilateral Heat Generation Body with Vein-Shaped High Thermal Conductivity Channel. Entropy. 2022; 24(10):1403. https://doi.org/10.3390/e24101403
Chicago/Turabian StyleZhu, Hongwei, Lingen Chen, Yanlin Ge, Shuangshuang Shi, and Huijun Feng. 2022. "Multi-Objective Constructal Design for Quadrilateral Heat Generation Body with Vein-Shaped High Thermal Conductivity Channel" Entropy 24, no. 10: 1403. https://doi.org/10.3390/e24101403
APA StyleZhu, H., Chen, L., Ge, Y., Shi, S., & Feng, H. (2022). Multi-Objective Constructal Design for Quadrilateral Heat Generation Body with Vein-Shaped High Thermal Conductivity Channel. Entropy, 24(10), 1403. https://doi.org/10.3390/e24101403