A Second-Order Crank–Nicolson Leap-Frog Scheme for the Modified Phase Field Crystal Model with Long-Range Interaction
Abstract
:1. Introduction
- We construct a second-order decoupled CNLF scheme by combining it with the SAV method in time and the Fourier spectral method in space and carry out the unique solvability, mass conservation, and stability for the MPFC equation with long-range interaction.
- The presented scheme is very easy to implement and highly efficient. We only need to solve two six-order, fully decoupled and linear equations with some constant coefficients at each time step.
- We compare the second-order accuracy and errors of the presented scheme with the CN and BDF2 schemes numerically. In addition, we display the dynamic evolution of the energy of phase variable in experiments with long-range interaction.
2. Governing Systems
3. Numerical Scheme
3.1. The Semi-Discrete CNLF Scheme
- Compute by solving a six-order decoupled linear equation ;
- Compute from (42) and from (30) by solving another six-order decoupled linear equation ;
- Finally, based on the above two steps, we can obtain from (37) as:
3.2. The Fully Discrete CNLF Scheme with Fourier Spectral Method in Space
3.3. Mass Conservation and Unconditional Stability
4. Numerical Experiments
4.1. Convergence Test
4.2. Energy Test
4.3. Phase Transition Behaviors in 2D and 3D
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berry, J.; Grant, M.; Elder, K. Diffusive atomistic dynamics of edge dislocations in two dimensions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2006, 73, 031609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanovic, P.; Haataja, M. Phase field crystal study of deformation and plasticity in nanocrystalline materials. Phys. Rev. E 2009, 80, 046107. [Google Scholar] [CrossRef] [Green Version]
- Elder, K.; Katakowski, M.; Haataja, M.; Grant, M. Modeling elasticity in crystal growth. Phys. Rev. Lett. 2002, 88, 245701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elder, K.; Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 2004, 70, 051605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanovic, P.; Haataja, M.; Provatas, N. Phase-field crystals with elastic interactions. Phys. Rev. Lett. 2006, 96, 225504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, T.; Kawasaki, K. Equilibrium morphology of block copolymer melts. Macromolecules 1986, 19, 2621–2632. [Google Scholar] [CrossRef]
- Li, X.; Shen, J. Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation. Adv. Comput. Math. 2020, 46, 48–68. [Google Scholar] [CrossRef]
- Zheng, N.; Li, X. Error analysis of the SAV Fourier-spectral method for the Cahn-Hilliard-Hele-Shaw system. Adv. Comput. Math. 2021, 47, 71. [Google Scholar] [CrossRef]
- Bates, P.; Brown, S.; Han, J. Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Mod. 2009, 6, 33–49. [Google Scholar]
- Liu, F.; Shen, J. Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations. Math. Methods Appl. Sci. 2015, 38, 4564–4575. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Liu, Y.; Tang, T. On large time-stepping methods for the Cahn-Hilliard equation. Appl. Numer. Math. 2007, 57, 616–628. [Google Scholar] [CrossRef]
- Du, Q.; Ju, L.; Li, X.; Qiao, Z. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation. J. Comput. Phys. 2018, 363, 39–54. [Google Scholar] [CrossRef]
- Dehghan, M.; Mohammadi, V. The numerical simulation of the phase field crystal (PFC) and modified phase field crystal (MPFC) models via global and local mesh less methods. Comput. Methods Appl. Mech. Eng. 2016, 298, 453–484. [Google Scholar]
- Liu, Z.; Li, X. Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. Appl. Numer. Math. 2020, 150, 491–506. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, W.; Wang, C.; Wise, S. A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation. Commun. Comput. Phys. 2018, 23, 572–602. [Google Scholar] [CrossRef] [Green Version]
- Yang, X. Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 2016, 327, 294–316. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Mei, L.; Li, Y. Efficient second-order unconditionally stable numerical schemes for the modified phase field crystal model with long-range interaction. J. Comput. Appl. Math. 2021, 389, 113335. [Google Scholar] [CrossRef]
- Hurl, N.; Layton, W. The Unstable Mode in the Crank-Nicolson Leap-Frog Method is Stable. Int. J. Numer. Anal. Mod. 2016, 13, 753–762. [Google Scholar]
- Jiang, N.; Tran, H. Analysis of a stabilized CNLF method with fast slow wave splittings for flow problems. Comput. Methods Appl. Math. 2015, 15, 307–330. [Google Scholar] [CrossRef]
- Jiang, N.; Kubacki, M.; Layton, W.; Moraiti, M.; Tran, H. A Crank-Nicolson Leapfrog stabilization: Unconditional stability and two applications. J. Comput. Appl. 2015, 281, 263–276. [Google Scholar] [CrossRef]
- Layton, W.; Trenchea, C. Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations. Appl. Numer. Math. 2012, 62, 112–120. [Google Scholar] [CrossRef]
- Kubacki, M. Uncoupling evolutionary groundwater-surface water flows using the Crank-Nicolson Leapfrog method. Numer. Methods Partial. Differ. Equ. 2013, 29, 1192–1216. [Google Scholar] [CrossRef]
- Hurl, N.; Layton, W.; Li, Y.; Trenchea, C. Stability analysis of the Crank-Nicolson-Leapfrog method with the Robert-Asselin-Williams time filter. BIT Numer. Math. 2014, 54, 1009–1021. [Google Scholar]
- Baskaran, A.; Lowengrub, J.; Wang, C.; Wise, S. Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 2013, 51, 2851–2873. [Google Scholar]
- Shin, J.; Lee, H.; Lee, J. First and second order numerical methods based on a new convex splitting for phase-field crystal equation. J. Comput. Phys. 2016, 327, 519–542. [Google Scholar] [CrossRef]
- Yang, X.; Han, D. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 2017, 330, 1116–1134. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yang, X. Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn-Hilliard model. Comput. Methods Appl. Mech. Eng. 2019, 351, 35–59. [Google Scholar] [CrossRef]
- Shen, J.; Xu, J.; Yang, J. The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 2018, 353, 407–416. [Google Scholar] [CrossRef]
- Li, J.S.X.; Rui, H. Energy stability and convergence of sav block-centered finite difference method for gradient flows. Math. Comput. 2019, 88, 2047–2068. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Xu, J.; Yang, J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM. Rev. 2019, 61, 474–506. [Google Scholar] [CrossRef] [Green Version]
- Swift, J.; Hohenberg, P. Hydrodynamics fluctuations at the convective instability. Phys. Rev. A 1977, 15, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Choksi, R.; Peletier, M.; Williams, J. On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional. SIAM J. Appl. Math. 2009, 69, 1712–1738. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Mei, L.; Yang, X.; Li, Y. Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv. Comput. Math. 2019, 45, C1551–C1580. [Google Scholar] [CrossRef]
- Bueno, J.; Starodumov, I.; Gomez, H.; Galenko, P.; Alexandrov, D. Three dimensional structures predicted by the modified phase field crystal equation. Comput. Mater. Sci. 2016, 111, C310–C312. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Feng, X.; Qian, L. A Second-Order Crank–Nicolson Leap-Frog Scheme for the Modified Phase Field Crystal Model with Long-Range Interaction. Entropy 2022, 24, 1512. https://doi.org/10.3390/e24111512
Wu C, Feng X, Qian L. A Second-Order Crank–Nicolson Leap-Frog Scheme for the Modified Phase Field Crystal Model with Long-Range Interaction. Entropy. 2022; 24(11):1512. https://doi.org/10.3390/e24111512
Chicago/Turabian StyleWu, Chunya, Xinlong Feng, and Lingzhi Qian. 2022. "A Second-Order Crank–Nicolson Leap-Frog Scheme for the Modified Phase Field Crystal Model with Long-Range Interaction" Entropy 24, no. 11: 1512. https://doi.org/10.3390/e24111512
APA StyleWu, C., Feng, X., & Qian, L. (2022). A Second-Order Crank–Nicolson Leap-Frog Scheme for the Modified Phase Field Crystal Model with Long-Range Interaction. Entropy, 24(11), 1512. https://doi.org/10.3390/e24111512