On Applicability of Quantum Formalism to Model Decision Making: Can Cognitive Signaling Be Compatible with Quantum Theory?
Abstract
:1. Introduction
- (a) An “experimental observable”; in physics, it is based on some measurement apparatus, in quantum-like applications, it is a question, task, or a problem for decision making;
- (b) A random variable representing an “experimental observable” in the classical (Kolmogorov) probability model;
- (c) A Hermitian operator (or more generally POVM) representing an “experimental observable” in the quantum probability model.
2. Signaling—Marginal Inconsistency
3. Sources of Signaling Compatible with Quantum Formalism
3.1. Marginal Consistency (No Signaling) for Compatible Quantum Observables
3.2. Signaling on Selection of Experimental Settings
3.3. Signaling from State Dependence on Experimental Settings
4. Projection Valued Measures
5. Generalized Observables: Positive Operator Valued Measures
6. Interpretations for the Violation of the Bell Inequalities
7. Concluding Remarks
8. Appendix: Quantum-like Modeling of Decision Making
8.1. Quantum-like Representation of Belief (Mental) State
8.2. Decisions as Quantum Observables
8.2.1. Representation of Questions and Tasks as Quantum Observables—By Hermitian Operators, PVMs, or POVMs
8.2.2. Quantum Dynamical Decision Making
8.3. Probability of Decision
8.4. Transformation of Belief State Resulting from Decision Making
9. Interpretations of Belief State and Probability
9.1. Statistical Interpretation of State and Probability
9.2. Individual Interpretation of State and Statistical Interpretation of Probability
How does the brain generate the concrete output starting with the mental state ψ?
9.3. Subjective Interpretation of Probability and QBism
“The fundamental primitive of QBism is the concept of experience. According to QBism, quantum mechanics is a theory that any agent can use to evaluate her expectations for the content of her personal experience.
QBism adopts the personalist Bayesian probability theory… This means that QBism interprets all probabilities, in particular those that occur in quantum mechanics, as an agent’s personal, subjective degrees of belief. This includes the case of certainty - even probabilities 0 or 1 are degrees of belief…
In QBism, a measurement is an action an agent takes to elicit an experience. The measurement outcome is the experience so elicited. The measurement outcome is thus personal to the agent who takes the measurement action. In this sense, quantum mechanics, like probability theory, is a single user theory. A measurement does not reveal a pre-existing value. Rather, the measurement outcome is created in the measurement action.
According to QBism, quantum mechanics can be applied to any physical system. QBism treats all physical systems in the same way, including atoms, beam splitters, Stern-Gerlach magnets, preparation devices, measurement apparatuses, all the way to living beings and other agents. In this, QBism differs crucially from various versions of the Copenhagen interpretation…
An agent’s beliefs and experiences are necessarily local to that agent. This implies that the question of nonlocality simply does not arise in QBism.”See also the recent article of Fuchs [138].
Funding
Conflicts of Interest
References
- Bell, J. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 1966, 38, 450. [Google Scholar] [CrossRef]
- Bell, J. Speakable and Unspeakable in Quantum Mechanics; Cambridge Univ. Press: Cambridge, UK, 1987. [Google Scholar]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef] [Green Version]
- De Broglie, L. The Current Interpretation of Wave Mechanics: A Critical Study; Elsevier: Amsterdam, The Netherlands, 1964. [Google Scholar]
- Gudder, S.P. Hidden variables in quantum mechanics reconsidered. Rev. Mod. Phys. 1968, 40, 229–231. [Google Scholar] [CrossRef]
- Gudder, S.P. On hidden-variable theories. J. Math. Phys. 1970, 11, 431. [Google Scholar] [CrossRef]
- Shimony, A. Hidden-variables models of quantum mechanics (Noncontextual and contextual). In Compendium of Quantum Physics; Springer: Berlin/Heidelberg, Germary, 2009; pp. 287–291. [Google Scholar]
- Shimony, A. Experimental test of local hidden variable theories. In Foundations of Quantum Mechanics; Academic: New York, NY, USA, 1971. [Google Scholar]
- Fine, A. Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 1982, 23, 1306. [Google Scholar] [CrossRef]
- Araujo, M.; Quintino, M.T.; Budroni, C.; Cunha, M.T.; Cabello, A. All noncontextuality inequalities for then-cycle scenario. Phys. Rev. A 2013, 88, 022118. [Google Scholar] [CrossRef] [Green Version]
- Aspect, A. Three Experimental Tests of Bell Inequalities by the Measurement of Polarization Correlations between Photons. Ph.D. Thesis, Orsay Press, Orsay, France, 1983. [Google Scholar]
- Weihs, G. Ein Experiment zum Test der Bellschen Ungleichung unter Einsteinscher Lokalität. Ph.D. THesis, University of Vienna, Vienna, Austria, 1999. [Google Scholar]
- Weihs, G.; Jennewein, T.; Simon, C.; Weinfurther, H.; Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 1998, 81, 5039–5043. [Google Scholar] [CrossRef] [Green Version]
- Giustina, M.; Mech, A.; Ramelow, S.; Wittmann, B.; Kofler, J.; Beyer, J.; Lita, A.; Calkins, B.; Gerrits, T.; Nam, S.W.; et al. Bell violation using entangled photons without the fair-sampling assumption. Nature 2013, 497, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A.; Ramelow, S.; Ursin, R.; Wittmann, B.; Kofler, J.; Basieva, I. On the equivalence of the Clauser-Horne and Eberhard inequality based tests. Phys. Scr. 2014, 2014, 014019. [Google Scholar] [CrossRef]
- Cabello, A.; Filipp, S.; Rauch, H.; Hasegawa, Y. Proposed experiment for testing quantum contextuality with neutrons. Phys. Rev. Lett. 2008, 100, 130404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartosik, H.; Klepp, J.; Schmitzer, C.; Sponar, S.; Cabello, A.; Rauch, H.; Hasegawa, Y. Experimental test of quantum contextuality in neutron interferometry. Phys. Rev. Lett. 2009, 103, 040403. [Google Scholar] [CrossRef] [PubMed]
- Hensen, B.; Bernien, H.; Dreau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellan, C.; et al. Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.-A.; Abellan, C.; et al. A significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.; Hamel, D.R.; Allman, M.S.; et al. A strong loophole-free test of local realism. Phys. Rev. Lett. 2015, 115, 250402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adenier, G.; Khrennikov, A. Test of the no-signaling principle in the Hensen loophole-free CHSH experiment. Fortschritte Physik (Prog. Phys.) 2016, 65, 1600096. [Google Scholar] [CrossRef] [Green Version]
- De la Pena, L.; Cetto, A.M.; Brody, T.A. On hidden variable theories and Bell’s inequality. Lett. Nuovo C. 1972, 5, 177. [Google Scholar] [CrossRef]
- Kupczynski, M. Bertrand’s paradox and Bell’s inequalities. Phys. Lett. A 1987, 121, 205–207. [Google Scholar] [CrossRef]
- Ballentine, L.E.; Jarrett, J.P. Bell’s theorem: Does quantum mechanics contradict relativity? Am. J. Phys. 1987, 55, 696–701. [Google Scholar] [CrossRef]
- Khrennikov, A. Non-Kolmogorov probability models and modified Bell’s inequality. J. Math. Phys. 2000, 41, 1768–1777. [Google Scholar] [CrossRef]
- Hess, K.; Philipp, W. A possible loophole in the theorem of Bell. Proc. Natl. Acad. Sci. USA 2001, 98, 14224–14227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Muynck, W. Foundations of Quantum Mechanics, an Empiricist Approach; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Nieuwenhuizen, T.M. Is the contextuality loophole fatal for the derivation of Bell inequalities? Found. Phys. 2011, 41, 580–591. [Google Scholar] [CrossRef] [Green Version]
- De Raedt, H.; Hess, K.; Michielsen, K. Extended Boole-Bell inequalities applicable to quantum theory. J. Comp. Theor. Nanosc. 2011, 8, 10119. [Google Scholar] [CrossRef] [Green Version]
- Hess, K.; De Raedt, H.; Michielsen, K. Hidden assumptions in the derivation of the theorem of Bell. Phys. Scr. 2012, 2012, 014002. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Bell argument: Locality or realism? Time to make the choice. AIP Conf. Proc. 2012, 1424, 160–175. Available online: https://arxiv.org/pdf/1108.0001v2.pdf (accessed on 26 October 2022).
- Kupczynski, M. Entanglement and quantum nonlocality demystified. In Quantum Theory: Reconsideration of Foundations 6, Växjö, Sweden, 11–14 June 2012; Khrennikov, A., Atmanspacher, H., Migdall, A., Polyakov, S., Eds.; AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA, 2012; Volume 1508, pp. 253–264. [Google Scholar]
- Khrennikov, A. Bell-Boole inequality: Nonlocality or probabilistic incompatibility of random variables? Entropy 2008, 10, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. Bell Inequalities, Experimental Protocols and Contextuality. Found. Phys. 2015, 45, 73. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. Closing the door on quantum nonlocality. Entropy 2018, 20, 877. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. Can we close the Bohr-Einstein quantum debate? Phil. Trans. R. Soc. A 2017, 375, 20160392. [Google Scholar] [CrossRef] [Green Version]
- Boughn, S. Making sense of Bell’s theorem and quantum nonlocality. Found. Phys. 2017, 47, 640–657. [Google Scholar] [CrossRef] [Green Version]
- Jung, K. Violation of Bell’s inequality: Must the Einstein locality really be abandoned? J. Phys. Conf. Ser. 2017, 880, 012065. [Google Scholar] [CrossRef]
- Griffiths, R.B. Quantum nonlocality: Myth and reality. arXiv 2019, arXiv:1901.07050. [Google Scholar]
- Cetto, A.M.; Valdes-Hernandez, A.; de la Pena, L. On the spin projection operator and the probabilistic meaning of the bipartite correlation function. Found. Phys. 2020, 50, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Boughn, S. There is no spooky action at a distance in quantum mechanics. Entropy 2022, 24, 560. [Google Scholar] [CrossRef] [PubMed]
- Khrennikov, A.; Basieva, I. Towards experiments to test violation of the original Bell inequality. Entropy 2018, 20, 280. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A.Y.; Loubenets, E.R. Evaluating the maximal violation of the original Bell inequality by two-qudit states exhibiting perfect correlations/anticorrelations. Entropy 2018, 20, 829. [Google Scholar] [CrossRef] [Green Version]
- Loubenets, E.R.; Khrennikov, A.Y. Quantum analog of the original Bell inequality for two-qudit states with perfect correlations/anticorrelations. J. of Phys. A Math. Theor. 2019, 52, 435304. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. After Bell. Fortschritte Physik (Prog. Phys.) 2017, 65, 1600014. [Google Scholar] [CrossRef]
- Khrennikov, A. Get rid of nonlocality from quantum physics. Entropy 2019, 21, 806. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Two faced Janus of quantum nonlocality. Entropy 2020, 22, 303. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Quantum postulate vs. quantum nonlocality: On the role of the Planck constant in Bell’s argument. Found. Phys. 2021, 51, 1–12. [Google Scholar] [CrossRef]
- Khrennikov, A. Can there be given any meaning to contextuality without incompatibility? Int. J. Theor. Phys. 2021, 60, 106–114. [Google Scholar] [CrossRef]
- Blasiak, P.; Pothos, E.M.; Yearsley, J.M.; Gallus, C.; Borsuk, E. Violations of locality and free choice are equivalent resources in Bell experiments. Proc. Natl. Acad. Sci. USA 2021, 118, e2020569118. [Google Scholar] [CrossRef] [PubMed]
- Gallus, C.; Blasiak, P.; Pothos, E.M. Quantifying and Interpreting Connection Strength in Macro-and Microscopic Systems: Lessons from Bell’s Approach. Entropy 2022, 24, 364. [Google Scholar] [CrossRef]
- Khrennikov, A. Is the Devil in h? Entropy 2021, 23, 632. [Google Scholar] [CrossRef]
- Avis, D.; Fischer, P.; Hilbert, A.; Khrennikov, A. Single, Complete, Probability Spaces Consistent with EPR-Bohm-Bell Experimental Data. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2009; Volume 1101, pp. 294–301. [Google Scholar]
- Khrennikov, A. Quantum probabilities and violation of CHSH-inequality from classical random signals and threshold type detection scheme. Progr. Theor. Phys. 2012, 128, 31–58. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. CHSH inequality: Quantum probabilities as classical conditional probabilities. Found. Phys. 2015, 45, 711–725. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A.; Alodjants, A. Classical (local and contextual) probability model for Bohm-Bell type experiments: No-Signaling as independence of random variables. Entropy 2019, 21, 157. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Contextuality, complementarity, signaling, and Bell tests. Entropy 2022, 24, 1380. [Google Scholar] [CrossRef]
- Adenier, G.; Khrennikov, A. Anomalies in EPR-Bell Experiments. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2006; Volume 810, pp. 283–293. [Google Scholar]
- Adenier, G.; Khrennikov, A. Is the fair sampling assumption supported by EPR experiments? J. Phys. B At. Mol. Opt. Phys. 2007, 40, 131–141. [Google Scholar] [CrossRef]
- Adenier, G. Quantum entanglement, fair sampling, and reality: Is the moon there when nobody looks? Am. J. Phys. 2008, 76, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Adenier, G. A fair sampling test for EPR-Bell experiments. J. Russ. Laser Res. 2008, 29, 409–417. [Google Scholar] [CrossRef]
- Weihs, G. A test of Bell’s inequality with spacelike separation. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2007; Volume 889, pp. 250–260. [Google Scholar]
- Khrennikov, A. Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena; Fundamental Theories of Physics, Kluwer: Dordreht, The Netherlands, 2004. [Google Scholar]
- Khrennikov, A. Ubiquitous Quantum Structure: From Psychology to Finances; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2010. [Google Scholar]
- Busemeyer, J.; Bruza, P. Quantum Models of Cognition and Decision; Cambridge Univ. Press: Cambridge, UK, 2012. [Google Scholar]
- Haven, E.; Khrennikov, A. Quantum Social Science; Cambridge Univ. Press: Cambridge, UK, 2013. [Google Scholar]
- Asano, M.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Quantum Adaptivity in Biology: From Genetics to Cognition; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2015. [Google Scholar]
- Haven, E.; Khrennikov, A.; Robinson, T.R. Quantum Methods in Social Science: A First Course; WSP: Singapore, 2017. [Google Scholar]
- Haven, E.; Khrennikov, A. The Palgrave Handbook of Quantum Models in Social Science; Macmillan Publishers Ltd.: London, UK, 2017; pp. 1–17. [Google Scholar]
- Bagarello, F. Quantum Concepts in the Social, Ecological and Biological Sciences; Cambridge Unive. Press: Cambridge, UK, 2019. [Google Scholar]
- Khrennikov, A. Social Laser; Jenny Stanford Publishing: New York, NY, USA, 2020. [Google Scholar]
- Basieva, I.; Khrennikov, A.; Ozawa, M. Quantum-like modeling in biology with open quantum systems and instruments. Biosystems 2021, 201, 104328. [Google Scholar] [CrossRef] [PubMed]
- Pothos, E.M.; Busemeyer, J.R. Quantum cognition. Annu. Rev. Psychol. 2022, 73, 749–778. [Google Scholar] [CrossRef] [PubMed]
- Conte, E.; Khrennikov, A.; Todarello, O.; Federici, A.; Mendolicchio, L.; Zbilut, J.P. A preliminary experimental verification on the possibility of Bell inequality violation in mental states. NeuroQuantology 2008, 6, 214–221. [Google Scholar] [CrossRef]
- Aerts, D.; Gabora, L.; Sozzo, S. Concepts and their dynamics: A quantum? The oretic modeling of human thought. Top. Cogn. Sci. 2013, 5, 737–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asano, M.; Hashimoto, T.; Khrennikov, A.; Ohya, M.; Tanaka, Y. Violation of contextual generalization of the Leggett-Garg inequality for recognition of ambiguous figures. Phys. Scr. 2014, 2014, 014006. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Zhang, R.; Kujala, J.V. Is there contextuality in behavioral and social systems? Phil. Trans. R. Soc. A 2015, 374, 20150099. [Google Scholar] [CrossRef]
- Bruza, P.D.; Kitto, K.; Ramm, B.J.; Sitbon, L. A probabilistic framework for analysing the compositionality of conceptual combinations. J. Math. Psych. 2015, 67, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Dzhafarov, E.N.; Kujala, J.V.; Cervantes, V.H.; Zhang, R.; Jones, M. On contextuality in behavioral data. Phil. Trans. R. Soc. A 2016, 374, 20150234. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, V.H.; Dzhafarov, E.N. Snow queen is evil and beautiful: Experimental evidence for probabilistic contextuality in human choices. Decision 2018, 5, 193. [Google Scholar] [CrossRef]
- Basieva, I.; Cervantes, V.H.; Dzhafarov, E.N.; Khrennikov, A. True contextuality beats direct influences in human decision making. J. Exp. Psych. Gen. 2019, 148, 1925. [Google Scholar] [CrossRef]
- Bruza, P.D.; Fell, L.; Hoyte, P.; Dehdashti, S.; Obeid, A.; Gibson, A.; Moreira, C.P. Contextuality and Context-Sensitivity in Probabilistic Models of Cognition. PsyArXiv 2022. [Google Scholar] [CrossRef]
- Bohr, N. Light and life. Nature 1933, 133 Pt 1,2, 421–423, 457–459. [Google Scholar]
- James, W. The Principles of Psychology; Henry Holt and Co.: New York, NY, USA, 1890; Reprinted in Harvard Univ. Press: Boston, BL, USA, 1983. [Google Scholar]
- Zeilinger, A. A foundational principle for quantum mechanics. Found. Phys. 1999, 29, 631–643. [Google Scholar] [CrossRef]
- Khrennikov, A.; Basieva, I.; Dzhafarov, E.N.; Busemeyer, J.R. Quantum models for psychological measurements: An unsolved problem. PLoS ONE 2014, 9, e110909. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, M.; Khrennikov, A. Application of theory of quantum instruments to psychology: Combination of question order effect with response replicability effect. Entropy 2019, 22, 37. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, M.; Khrennikov, A. Modeling combination of question order effect, response replicability effect, and QQ-equality with quantum instruments. J. Math. Psychol. 2021, 100, 102491. [Google Scholar] [CrossRef]
- Loubenets, E.R. On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site. J. Phys. A Math. Theor. 2008, 41, 445303. [Google Scholar] [CrossRef]
- Loubenets, E.R. Local quasi hidden variable modelling and violations of Bell-type inequalities by a multipartite quantum state. J. Math. Phys. 2012, 53, 022201. [Google Scholar] [CrossRef] [Green Version]
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419, Erratum in Rev. Mod. Phys. 2014, 86, 839. [Google Scholar] [CrossRef] [Green Version]
- Loubenets, E.R. Bell’s nonlocality in a general nonsignaling case: Quantitatively and conceptually. Found. Phys. 2017, 47, 1100–1114. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A.; Volovich, I. Local Realism, Contextualism and Loopholes in Bells Experiments. arXiv 2002, arXiv:quant-ph/0212127. [Google Scholar]
- Khrennikov, A.; Volovich, I. Einstein, Podolsky and Rosen versus Bohm and Bell. arXiv 2002, arXiv:quant-ph/0211078. [Google Scholar]
- Svozil, K. Varieties of contextuality based on probability and structural nonembeddability. Theor. Comp. Sc. 2022, 924, 117–128. [Google Scholar] [CrossRef]
- Svozil, K. On counterfactuals and contextuality. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2005; Volume 750, pp. 351–360. [Google Scholar]
- Svozil, K. How much contextuality? Nat. Comput. 2012, 11, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. Roots and (re) sources of value (in) definiteness versus contextuality. In Quantum, Probability, Logic; Springer: Cham, Swizerland, 2020; pp. 521–544. [Google Scholar]
- Svozil, K. “Haunted” quantum contextuality. arXiv 1999, arXiv:quant-ph/9907015. [Google Scholar]
- Svozil, K. Proposed direct test of a certain type of noncontextuality in quantum mechanics. Phys. Rev. A 2009, 80, 040102. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.B. Quantum measurements are noncontextual. arXiv 2013, arXiv:1302.5052. [Google Scholar]
- Griffiths, R.B. What quantum measurements measure. Phys. Rev. A 2017, 96, 032110. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.B. Quantum measurements and contextuality. Phil. Trans. Royal Soc. A 2019, 377, 20190033. [Google Scholar] [CrossRef] [Green Version]
- Cabello, A. Proposal for revealing quantum nonlocality via local contextuality. Phys. Rev. Lett. 2010, 104, 220401. [Google Scholar] [CrossRef] [Green Version]
- Cabello, A. Converting contextuality into nonlocality. Phys. Rev. Lett. 2021, 127, 070401. [Google Scholar] [CrossRef]
- Budroni, C.; Cabello, A.; Gühne, O.; Kleinmann, M.; Larsson, J.A. Quantum contextuality. arXiv 2021, arXiv:2102.13036. [Google Scholar]
- Grangier, P. Contextual objectivity and the quantum formalism. Int. J. Quantum Inf. 2005, 3, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Grangier, P. Contextual inferences, nonlocality, and the incompleteness of quantum mechanics. Entropy 2021, 23, 1660. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kujala, J.V. Selectivity in probabilistic causality: Where psychology runs into quantum physics. J. Math. Psych. 2012, 56, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Dzhafarov, E.N.; Kujala, J.V.; Larsson, J.-A. Contextuality in three types of quantum-mechanical systems. Found. Phys. 2015, 7, 762–782. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kujala, J.V. Probabilistic contextuality in EPR/Bohm-type systems with signaling allowed. In Contextuality from Quantum Physics to Psychology; Dzhafarov, E., Jordan, S., Zhang, R., Cervantes, V., Eds.; World Scientific Publishing: Hoboken, NJ, USA, 2015; pp. 287–308. [Google Scholar]
- Dzhafarov, E.N.; Kujala, J.V. Context-content systems of random variables: The contextuality-by default theory. J. Math. Psych. 2016, 74, 11–33. [Google Scholar] [CrossRef] [Green Version]
- Dzhafarov, E.N.; Kon, M. On universality of classical probability with contextually labeled random variables. J. Math. Psych. 2018, 85, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, G. Quantum contextuality in the Copenhagen approach. Phil. Trans. Royal Soc. A 2019, 377, 20190025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeger, G. Quantum contextuality and indeterminacy. Entropy 2020, 22, 867. [Google Scholar] [CrossRef] [PubMed]
- Koopman, B. Quantum theory and the foundations of probability. In Applied Probability; MacColl, L.A., Ed.; McGraw-Hill: New York, NY, USA, 1955; pp. 97–102. [Google Scholar]
- Ballentine, L. Probability in Quantum Mechanics. Annals of New York Academy of Science. Tech. Ideas Quantum Meas. Theory 1986, 480, 382–392. [Google Scholar]
- Ballentine, L.E. Probability theory in quantum mechanics. Am. J. Phys. 1986, 54, 883–889. [Google Scholar] [CrossRef]
- Ballentine, L.E. The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 1970, 42, 358–381. [Google Scholar] [CrossRef]
- Ballentine, L.E. Quantum Mechanics: A Modern Development; WSP: Singapore, 2014. [Google Scholar]
- Boole, G. On the theory of probabilities. Phil- Trans. Royal Soc. London 1862, 152, 225–242. [Google Scholar]
- Boole, G. An Investigation of the Laws of Thought; Dover: New York, NY, USA, 1958. [Google Scholar]
- Vorob’ev, N.N. Consistent Families of Measures and Their Extension. Theory Probab. Its Appl. 1962, 7, 147–163. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Foundations of the Theory of Probability; Chelsea Publishing Company: New York, NY, USA, 1956. [Google Scholar]
- Pitowsky, I. From George Boole to John Bell: The Origins of Bells Inequalities. In Proc. Conf. Bells Theorem, Quantum Theory and Conceptions of the Universe; Kluwer: Dordrecht, The Netherlands, 1989; pp. 37–49. [Google Scholar]
- Pitowsky, I. Range Theorems for Quantum Probability and Entanglement. In Proceedings Conference Quantum Theory: Reconsideration of Foundations; Växjö University Press: Växjö, Sweden, 2002; pp. 299–308. [Google Scholar]
- Hess, K.; Philipp, W. Bell’s theorem: Critique of proofs with and without inequalities. In AIP Conference Proceedings; American Inst. Phys: New York, NY, USA, 2005; Volume 750, pp. 150–157. [Google Scholar]
- Beltrametti, E.G.; Cassinelli, C. The logic of quantum mechanics. SIAM 1983, 25, 429–431. [Google Scholar] [CrossRef]
- Khrennikov, A. Interpretations of Probability; VSP Int. Sc. Publishers: Utrecht, The Netherlands; Tokyo, Janpan, 1999. [Google Scholar]
- Khrennikov, A. Interpretations of Probability, 2nd ed.; De Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Khrennikov, A. Contextual Approach to Quantum Formalism; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2009. [Google Scholar]
- Khrennikov, A. Unuploaded experiments have no result. arXiv 2015, arXiv:1505.04293. [Google Scholar]
- Plotnitsky, A. Niels Bohr and Complementarity: An Introduction; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2012. [Google Scholar]
- Plotnitsky, A. The Unavoidable Interaction between the Object and the Measuring Instruments: Reality, Probability, and Nonlocality in Quantum Physics. Found. Phys. 2020, 50, 1824–1858. [Google Scholar] [CrossRef]
- Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y. A quantum-like model of selection behavior. J. Math. Psych. 2017, 78, 2–12. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Schack, R. QBism and the Greeks: Why a quantum state does not represent an element of physical reality. Phys. Scr. 2014, 90, 015104. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, C.A. Notwithstanding Bohr, the reasons for QBism. Mind Matter 2017, 15, 245–300. [Google Scholar]
- Haven, E.; Khrennikov, A. Statistical and subjective interpretations of probability in quantum-like models of cognition and decision making. J. Math. Psych. 2016, 74, 82–91. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrennikov, A. On Applicability of Quantum Formalism to Model Decision Making: Can Cognitive Signaling Be Compatible with Quantum Theory? Entropy 2022, 24, 1592. https://doi.org/10.3390/e24111592
Khrennikov A. On Applicability of Quantum Formalism to Model Decision Making: Can Cognitive Signaling Be Compatible with Quantum Theory? Entropy. 2022; 24(11):1592. https://doi.org/10.3390/e24111592
Chicago/Turabian StyleKhrennikov, Andrei. 2022. "On Applicability of Quantum Formalism to Model Decision Making: Can Cognitive Signaling Be Compatible with Quantum Theory?" Entropy 24, no. 11: 1592. https://doi.org/10.3390/e24111592
APA StyleKhrennikov, A. (2022). On Applicability of Quantum Formalism to Model Decision Making: Can Cognitive Signaling Be Compatible with Quantum Theory? Entropy, 24(11), 1592. https://doi.org/10.3390/e24111592