The Determination Method of Satisfactory Consistency of the Interval Number Pairwise Comparisons Matrix Based on Submatrix
Abstract
:1. Introduction
2. Basic Knowledge
- (1)
- when or , ;
- (2)
- then ;
3. The Determination Method of Satisfactory Consistency of the Interval Number Pairwise Comparisons Matrix and the Ranking of Entities
The Determination of Satisfactory Consistency of the Interval Number Pairwise Comparisons Matrix
4. Example Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Binu, R.; Isaac, P. Some characterizations of neutrosophic submodules of an R-module. Appl. Math. Nonlinear Sci. 2021, 6, 359–372. [Google Scholar] [CrossRef]
- Che, X.; Li, M.; Zhang, X.; Alassafi, M.O.; Zhang, H. Communication architecture of power monitoring system based on incidence matrix model. Appl. Math. Nonlinear Sci. 2022, 7, 83–92. [Google Scholar] [CrossRef]
- Song, W.; Fang, J.; Wang, R.; Tan, K. Detection of pig based on improved RESNET model in natural scene. Appl. Math. Nonlinear Sci. 2021, 6, 215–226. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Uncertainty and rank order in the analytic hierarchy process. Eur. J. Oper. Res. 1987, 32, 107–117. [Google Scholar] [CrossRef]
- Feng, X.; Wei, C.; Hu, G.; Li, Z. Consistency of interval judgment matrix. Control Decis. 2008, 23, 182–186. [Google Scholar]
- Liu, T.C.; Li, Z.F. Improved method of inconsistent interval reciprocal judgment matrix. Fuzzy Syst. Math. 2017, 31, 117–123. [Google Scholar]
- Xu, Y.J.; Zhang, Y.Z.; Wei, C.P. Acceptable consistency analysis of interval complement comparison matrices. Control Decis. 2011, 26, 327–331. [Google Scholar]
- Arbel, A. Approximate articulation of preference and priority derivation. Eur. J. Oper. Res. 1989, 43, 317–326. [Google Scholar] [CrossRef]
- Arbel, A.; Vargas, L.G. Preference simulation and preference programming: Robustness issues in priority derivation. Eur. J. Oper. Res. 1993, 69, 200–209. [Google Scholar] [CrossRef]
- Brunelli, M. Studying a set of properties of inconsistency indices for pairwise comparisons. Ann. Oper. Res. 2017, 248, 143–161. [Google Scholar] [CrossRef] [Green Version]
- Leung, L.C.; Cao, D. On consistency and ranking of alternatives in fuzzy AHP. Eur. J. Oper. Res. 2000, 124, 102–113. [Google Scholar] [CrossRef]
- Zhu, J.J.; Liu, S.X.; Wang, M.G. Novel weight approach for interval numbers comparison matrix in the analytic hierarchy process. Syst. Eng.-Theory Pract. 2005, 25, 29–34. [Google Scholar]
- Liu, F.; Zhang, W.G.; Zhang, L.H. A group decision-making model based on a generalized ordered weighted geometric average operator with interval preference matrices. Fuzzy Sets Syst. 2014, 246, 1–18. [Google Scholar] [CrossRef]
- Liu, F.; Peng, Y.N.; Yu, Q.; Zhao, H. A decision-making model based on interval additive reciprocal matrices with additive approximation-consistency. Inf. Sci. 2018, 422, 161–176. [Google Scholar] [CrossRef]
- Liu, F.; Yu, Q.; Pedrycz, W.; Zhang, W.G. A group decision making model based on an inconsistency index of interval multiplicative reciprocal matrices. Knowl.-Based Syst. 2018, 145, 67–76. [Google Scholar] [CrossRef]
- Juárez, F.F.; Esenarro, D.; Díaz, M.; Frayssinet, M. Model based on balanced scorecard applied to the strategic plan of a peruvian public entity. 3c Empresa Investig. Pensam. Crítico 2021, 10, 127–147. [Google Scholar] [CrossRef]
- Yadav, A.K.; Sora, M. An optimized deep neural network-based financial statement fraud detection in text mining. 3C Empresa Investig. Pensam. Crítico 2021, 10, 77–105. [Google Scholar] [CrossRef]
- Medina, R.; Breña, J.L.; Esenarro, D. Efficient and sustainable improvement of a system of production and commercialization of Essential Molle Oil (Schinus Molle). 3c Empresa Investig. Pensam. Crítico 2021, 10, 43–75. [Google Scholar] [CrossRef]
- Tan, J.Y. Consistency of The IAHP and The Calculation of the Wight-vector. Math. Pract. Theory 2010, 40, 165–172. [Google Scholar]
- Wei, C.P.; Zhang, Y.Z.; Feng, X.Q. Deriving Weights from Interval Comparison Matrix based on Consistency Test. Syst. Eng. Theory Pract. 2007, 27, 132–139. [Google Scholar] [CrossRef]
- Kuo, T. Interval multiplicative pairwise comparison matrix: Consistency, indeterminacy and normality. Inf. Sci. 2020, 517, 244–253. [Google Scholar] [CrossRef]
- Wang, Z.J.; Lin, J. Consistency and optimized priority weight analytical solutions of interval multiplicative preference relations. Inf. Sci. 2019, 482, 105–122. [Google Scholar] [CrossRef]
- Meng, F.Y.; Tang, C.Q. A new consistency concept for interval multiplicative preference relations. Appl. Soft Comput. 2017, 52, 262–276. [Google Scholar] [CrossRef]
- Wan, S.P.; Wang, F.; Dong, J.Y. A group decision making method with interval valued fuzzy preference relations based on the geometric consistency. Inf. Fusion 2018, 40, 87–100. [Google Scholar] [CrossRef]
- Yeni, F.B.; Özçelik, G. Interval-valued Atanassov intuitionistic fuzzy CODAS method for multi-criteria group decision making problems. Group Decis. Negot. 2019, 28, 433–452. [Google Scholar] [CrossRef]
- Maqache, N.; Swart, A.J. Remotely measuring and controlling specific parameters of a PV module via an RF link. 3C Tecnol. Glosas Innov. Apl. Pyme 2021, 10, 103–129. [Google Scholar] [CrossRef]
- Horani, M.O.; Najeeb, M.; Saeed, A. Model electric car with wireless charging using solar energy. 3c Tecnol. Glosas Innov. Apl. Pyme 2021, 10, 89–101. [Google Scholar] [CrossRef]
- Julca, A.B.; Tapia, C.D.; Hilario, F.M.; Corpus, C.M. Qualitative benchmarking study of software for switch performance evaluation. 3c Tecnol. Glosas Innov. Apl. Pyme 2021, 10, 35–49. [Google Scholar] [CrossRef]
- López-Morales, V. A reliable method for consistency improving of interval multiplicative preference relations expressed under uncertainty. Int. J. Inf. Technol. Decis. Mak. 2018, 17, 1561–1585. [Google Scholar] [CrossRef]
- Herrera-Viedma, E.; Herrera, F.; Chiclana, F.; Luque, M. Some issues on consistency of fuzzy preference relations. Eur. J. Oper. Res. 2004, 154, 98–109. [Google Scholar] [CrossRef]
- Jin, F.; Zhou, Z.; Ma, Y.; Chen, Y. Satisfactory consistency judgement and inconsistency adjustment of linguistic judgement matrix. Appl. Math. Nonlinear Sci. 2022. Available online: https://sciendo.com/article/10.2478/amns.2021.1.00109. [CrossRef]
- Koczkodaj, W.W.; Urban, R. Axiomatization of inconsistency indicators for pairwise comparisons. Int. J. Approx. Reason. 2018, 94, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Frayssinet, M.; Esenarro, D.; Juárez, F.F.; Díaz, M. Methodology based on the NIST cybersecurity framework as a proposal for cybersecurity management in government organizations. 3c TIC Cuad. Desarro. Apl. TIC 2021, 10, 123–141. [Google Scholar] [CrossRef]
- Dewani, A.; Memon, M.A.; Bhatti, S. Development of computational linguistic resources for automated detection of textual cyberbullying threats in Roman Urdu language. 3c TIC Cuad. Desarro. Apl. TIC 2021, 10, 101–121. [Google Scholar] [CrossRef]
- Kaseng, F.; Lezama, P.; Inquilla, R.; Rodriguez, C. Evolution and advance usage of Internet in Peru. 3c TIC Cuad. Desarro. Apl. TIC 2020, 9, 113–127. [Google Scholar] [CrossRef]
- Dong, Y.C.; Li, C.C.; Chilana, F.; Herrera-Viedam, E. Average case consistency measurement and analysis of interval-valued reciprocal preference relations. Knowl.-Based Syst. 2016, 114, 108–117. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, W.G.; Shang, Y.F. A group decision-making model with interval multiplicative reciprocal matrices based on the geometric consistency index. Comput. Ind. Eng. 2014, 101, 184–193. [Google Scholar] [CrossRef]
- Koczkodaj, W.W.; Szwarc, R. On axiomatization of inconsistency indicators in pairwise comparisons. Fundam. Inform. 2014, 132, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Wang, Y.M.; Yang, J.B.; Xu, D.L. A two-stage logarithmic goal programming method for generating weights from interval comparison matrice. Fuzzy Set Syst. 2005, 152, 475–498. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, F.; Wu, Z.; Zhao, K.; Guirao, J.L.G.; Chen, H. The Determination Method of Satisfactory Consistency of the Interval Number Pairwise Comparisons Matrix Based on Submatrix. Entropy 2022, 24, 1795. https://doi.org/10.3390/e24121795
Jin F, Wu Z, Zhao K, Guirao JLG, Chen H. The Determination Method of Satisfactory Consistency of the Interval Number Pairwise Comparisons Matrix Based on Submatrix. Entropy. 2022; 24(12):1795. https://doi.org/10.3390/e24121795
Chicago/Turabian StyleJin, Fengxia, Zhonghua Wu, Kun Zhao, Juan L. G. Guirao, and Huatao Chen. 2022. "The Determination Method of Satisfactory Consistency of the Interval Number Pairwise Comparisons Matrix Based on Submatrix" Entropy 24, no. 12: 1795. https://doi.org/10.3390/e24121795
APA StyleJin, F., Wu, Z., Zhao, K., Guirao, J. L. G., & Chen, H. (2022). The Determination Method of Satisfactory Consistency of the Interval Number Pairwise Comparisons Matrix Based on Submatrix. Entropy, 24(12), 1795. https://doi.org/10.3390/e24121795