A Comprehensive Analysis of Hyperbolical Fluids in Modified Gravity
Abstract
:1. Introduction
2. Basic Formalism of the Theory
3. Modified Field Equations
4. Intrinsic Curvature and Conformal Tensor
Tolman Mass
5. Orthogonal Splitting of Curvature Tensors
6. Hyperbolically Symmetric Static Solutions
6.1. Conformally Flat Solutions
6.2. A Model with Zero Complexity Factor
6.3. Stiff Equation of State
- WhenLet us initially suppose that the tangential pressure does not exist. Then the integration of Equation (68) results in
- WhenThis case satisfies stiff state equation along with . In other words, we are considering less complex relativistic hyperbolical symmetric manifolds, whose energy density is specifically proportional to the pressure component. Therefore, we are clear to consider the simplest stiff fluid model (the one that meets the vanishing complexity factor criterion in addition to Equation (67)). Firstly, by implementing the former condition in Equation (43) and then feeding it back the resultant expression into Equation (68), we achieve
7. Conclusions
- Our model is comprised of fluid having negative energy density. The presence of this property in the relativistic fluid suggests that our study could be applicable to various cosmological and astrophysical objects, such as wormholes, warp drive, etc. It is worthy to note that negative energies or energy density is compatible with quantum field theory;
- We found that a test particle moving over the hyperbolically symmetric objects cannot reach the central point of the symmetry. This is due to the formation of empty central vacuole. The existence of central vacuum cavity are often invoked in cosmological voids and haloes. Voids are underdense areas that spread within the cosmos to make large filaments. They are neither cylindrical nor spherical in shape;
- In addition to this, we have performed our study in theory. Depending upon the choice of the model, we could have above mentioned results at different cosmic eras, such as, phantom, dark energy, inflation, etc. Thus, due to our study, one can analyze the properties of hyperbolical anisotropic manifolds at different cosmic evolutionary stages;
- All of the results are compatible with GR findings when .
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Einstein, A. Zur elektrodynamik bewegter körper. Ann. Phys. 1905, 4, 891–921. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. 1970, 150, 1. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f (R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V.; Capozziello, S. Beyond Einstein Gravity; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F (R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified f (R) gravity consistent with realistic cosmology: From a matter dominated epoch to a dark energy universe. Phys. Rev. D 2006, 74, 086005. [Google Scholar] [CrossRef] [Green Version]
- Momeni, D.; Gholizade, H. A note on constant curvature solutions in cylindrically symmetric metric f (R) Gravity. Int. J. Mod. Phys. D 2009, 18, 1719. [Google Scholar] [CrossRef]
- Momeni, D.; Raza, M.; Myrzakulov, R. Construction of a holographic superconductor in F (R) gravity. Eur. Phys. J. Plus 2014, 129, 30. [Google Scholar] [CrossRef] [Green Version]
- Momeni, D.; Myrzakulov, R.; Güdekli, E. Cosmological viable mimetic f (R) and f (R, T) theories via Noether symmetry. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1550101. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.; Oikonomou, V. Autonomous dynamical system approach for f (R) gravity. Phys. Rev. D 2017, 96, 104049. [Google Scholar] [CrossRef] [Green Version]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D. Maximal neutron star mass and the resolution of the hyperon puzzle in modified gravity. Phys. Rev. D 2014, 89, 103509. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115. [Google Scholar] [CrossRef] [Green Version]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D. Further stable neutron star models from f(R) gravity. J. Cosmol. Astropart. Phys. 2013, 2013, 040. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J. Post-Newtonian constraints on f (R) cosmologies in metric and Palatini formalism. Phys. Rev. D 2005, 72, 083505. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D. Palatini approach to modified gravity: F (R) theories and beyond. Phys. Rev. D 2011, 84, 124059. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D. Nonsingular Black Holes in ƒ (R) Theories. Universe 2015, 1, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 2008, 40, 357. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P. Modified actions for gravity: Theory and phenomenology. arXiv 2007, arXiv:0710.4438. [Google Scholar]
- Occhionero, F.; Veccia-Scavalli, L.; Vittorio, N. The formation of cavities around cosmological condensations. Astron. Astrophys. 1981, 97, 169. [Google Scholar]
- Hausman, M.A.; Olson, D.W.; Roth, B.D. The evolution of voids in the expanding universe. Astrophys. J. 1983, 270, 351. [Google Scholar] [CrossRef]
- Occhionero, F.; Santangelo, P.; Vittorio, N. Condensations and Cavities. In Symposium-International Astronomical Union; Cambridge University Press: Cambridge, UK, 1983; Volume 104, p. 217. [Google Scholar]
- Goryachev, M.; McAllister, B.; Tobar, M.E. Probing dark universe with exceptional points. Phys. Dark Universe 2019, 23, 100244. [Google Scholar] [CrossRef] [Green Version]
- Harrison, B.K. Exact three-variable solutions of the field equations of general relativity. Phys. Rev. 1959, 116, 1285. [Google Scholar] [CrossRef]
- Ellis, G.R. Dynamics of pressure-free matter in general relativity. J. Math. Phys. 1967, 8, 1171. [Google Scholar] [CrossRef]
- Herrera, L.; Pavón, D. Hyperbolic theories of dissipation: Why and when do we need them. Phys. A Stat. Mech. Appl. 2002, 307, 121. [Google Scholar] [CrossRef] [Green Version]
- Gaudin, M.; Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. Gravity of a static massless scalar field and a limiting Schwarzschild-like geometry. Int. J. Mod. Phys. 2006, 15, 1387. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, L.; Cacciatori, S.L.; Gorini, V.; Kamenshchik, A.; Piattella, O.F. Dark matter effects in vacuum spacetime. Phys. Rev. D 2010, 82, 027301. [Google Scholar] [CrossRef] [Green Version]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.A.; Tronconi, A.; Vardanyan, T.; Venturi, G.; Vernov, S.Y. Duality between static spherically or hyperbolically symmetric solutions and cosmological solutions in scalar-tensor gravity. Phys. Rev. D 2018, 98, 124028. [Google Scholar] [CrossRef] [Green Version]
- Mädler, T. Affine-null metric formulation of general relativity at two intersecting null hypersurfaces. Physi. Rev. D 2019, 99, 104048. [Google Scholar] [CrossRef] [Green Version]
- Ren, J. Phase transitions of hyperbolic black holes in anti-de Sitter space. arXiv 2019, arXiv:1910.06344. [Google Scholar]
- Maciel, A.; Le Delliou, M.; Mimoso, J.P. New perspectives on the TOV equilibrium from a dual null approach. Class. Quantum Gravity 2020, 37, 125005. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J.; Witten, L. Geodesics of the hyperbolically symmetric black hole. Phys. Rev. D 2020, 101, 064071. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric static fluids: A general study. Phys. Rev. D 2021, 103, 024037. [Google Scholar] [CrossRef]
- Bhatti, M.Z.; Yousaf, Z.; Tariq, Z. Influence of electromagnetic field on hyperbolically symmetric source. Eur. Phys. J. 2021, 136, 1. [Google Scholar] [CrossRef]
- Yousaf, Z.; Khlopov, M.Y.; Bhatti, M.Z.; Asad, H. Hyperbolically Symmetric Static Charged Cosmological Fluid Models. Mon. Not. R. Astron. Soc. 2022, 510, 4100–4109. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Dynamics of hyperbolically symmetric fluids. Symmetry 2021, 13, 1568. [Google Scholar] [CrossRef]
- Lobo, F.S.; Mimoso, J.P. Possibility of hyperbolic tunneling. Phys. Rev. D 2010, 82, 044034. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically Symmetric Versions of Lemaitre–Tolman–Bondi Spacetimes. Entropy 2021, 23, 1219. [Google Scholar] [CrossRef]
- Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without scalar fields. arXiv 2003, arXiv:astro-ph/0303041. [Google Scholar]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004, 70, 043528. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, M.Z.; Yousaf, Z.; Tariq, Z. Structure scalars and their evolution for massive objects in f (R) gravity. Eur. Phys. J. C 2021, 81, 1. [Google Scholar] [CrossRef]
- Loveridge, L.C. Physical and geometric interpretations of the Riemann tensor, Ricci tensor, and scalar curvature. arXiv 2004, arXiv:gr-qc/0401099. [Google Scholar]
- Coley, A. Classification of the Weyl tensor in higher dimensions and applications. Class. Quantum Gravity 2008, 25, 033001. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R.C. On the use of the energy-momentum principle in general relativity. Phys. Rev. 1930, 35, 875. [Google Scholar] [CrossRef]
- Bel, L. Inductions électromagnétique et gravitationnelle. In Annales de l’Institut Henri Poincaré; NUMDAM: Paris, France, 1961; Volume 17, p. 37. [Google Scholar]
- Herrera, L.; Ospino, J.; Di Prisco, A.; Fuenmayor, E.; Troconis, O. Structure and evolution of self-gravitating objects and the orthogonal splitting of the Riemann tensor. Phys. Rev. D 2009, 79, 064025. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J. Lemaitre-Tolman-Bondi dust spacetimes: Symmetry properties and some extensions to the dissipative case. Phys. Rev. D 2010, 82, 024021. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L. On the meaning of general covariance and the relevance of observers in general relativity. Int. J. Mod. Phys. D 2011, 20, 2773. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, Z.; Bamba, K.; Bhatti, M.Z. Influence of modification of gravity on the dynamics of radiating spherical fluids. Phys. Rev. D 2016, 93, 064059. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, Z.; Bamba, K.; Bhatti, M.Z. Causes of irregular energy density in f (R, T) gravity. Phys. Rev. D 2016, 93, 124048. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, Z.; Bhatti, M.Z.; Ali, A. Electromagnetic field and quasi-homologous constraint for spherical fluids in f (R, T) gravity. Eur. Phys. J. Plus 2021, 136, 1013. [Google Scholar] [CrossRef]
- Herrera, L. New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case. Phys. Rev. D 2018, 97, 044010. [Google Scholar] [CrossRef] [Green Version]
- Andrade, J.; Contreras, E. Stellar models with like-Tolman IV complexity factor. Eur. Phys. J. C 2021, 81, 889. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self-gravitating fluid distributions. Phys. Rev. D 2018, 98, 104059. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Carot, J. Complexity of the Bondi metric. Phys. Rev. D 2019, 99, 124028. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, Z.; Bhatti, M.Z.; Naseer, T. New definition of complexity factor in f (R, T, RμνTμν) gravity. Phys. Dark Universe 2020, 28, 100535. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, Z.; Bhatti, M.Z.; Hassan, K. Complexity for self-gravitating fluid distributions in f (G, T) gravity. Eur. Phys. J. Plus 2020, 135, 397. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.Z.; Asad, H. Hyperbolically symmetric sources in f (R, T) gravity. Ann. Phys. 2022, 437, 168753. [Google Scholar] [CrossRef]
- Darmois, G. Memorial of Mathematical Sciences Booklet; Gauthier-Villars: Paris, France, 1927; Volume 25. [Google Scholar]
- Senovilla, J.M. Junction conditions for F (R) gravity and their consequences. Phys. Rev. D 2013, 88, 064015. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Prisco, A.D.; Ospino, J.; Fuenmayor, E. Conformally flat anisotropic spheres in general relativity. J. Math. Phys. 2001, 42, 2129. [Google Scholar] [CrossRef] [Green Version]
- Zeldovich, Y.B. The equation of state at ultrahigh densities and its relativistic limitations. Sov. Phys. JETP 1962, 14, 1143. [Google Scholar]
- Kruskal, M.D. Maximal extension of Schwarzschild metric. Phys. Rev. 1960, 119, 1743. [Google Scholar] [CrossRef]
- Israel, W. New interpretation of the extended Schwarzschild manifold. Phys. Rev. 1966, 143, 1016. [Google Scholar] [CrossRef]
- Herrera, L.; Witten, L. An Alternative Approach to the Static Spherically Symmetric, Vacuum Global Solution to the Einstein Equations. Adv. High Energy Phys. 2018, 2018, 3839103. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousaf, Z.; Bhatti, M.Z.; Khlopov, M.; Asad, H. A Comprehensive Analysis of Hyperbolical Fluids in Modified Gravity. Entropy 2022, 24, 150. https://doi.org/10.3390/e24020150
Yousaf Z, Bhatti MZ, Khlopov M, Asad H. A Comprehensive Analysis of Hyperbolical Fluids in Modified Gravity. Entropy. 2022; 24(2):150. https://doi.org/10.3390/e24020150
Chicago/Turabian StyleYousaf, Z., M. Z. Bhatti, Maxim Khlopov, and H. Asad. 2022. "A Comprehensive Analysis of Hyperbolical Fluids in Modified Gravity" Entropy 24, no. 2: 150. https://doi.org/10.3390/e24020150
APA StyleYousaf, Z., Bhatti, M. Z., Khlopov, M., & Asad, H. (2022). A Comprehensive Analysis of Hyperbolical Fluids in Modified Gravity. Entropy, 24(2), 150. https://doi.org/10.3390/e24020150