Quantum Attacks on Sum of Even–Mansour Construction with Linear Key Schedules
Abstract
:1. Introduction
2. Preliminaries
3. Quantum Algorithms
3.1. Simon’s Algorithm
3.2. Grover’s Algorithm
3.3. Grover-Meet-Simon Algorithm
4. Quantum Attacks against SoEM with Linear Key Schedules
4.1. Quantum Attacks against SoEM21
4.2. Quantum Attacks against SoEM with Linear Key Schedules
5. Generalizations and Attacks
5.1. Generalizations
5.2. Quantum Key Recovery Attacks
6. Conclusions and Future Works
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999, 41, 303–332. [Google Scholar] [CrossRef]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Annual ACM Symposium on the Theory of Computing; Miller, G.L., Ed.; ACM: Berlin/Heidelberg, Germany, 2020; pp. 212–219. [Google Scholar]
- Simon, D.R. On the power of quantum computation. SIAM J. Comput. 1997, 26, 1474–1483. [Google Scholar] [CrossRef]
- Kuwakado, H.; Morii, M. Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In Proceedings of the IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010; pp. 2682–2685. [Google Scholar]
- Hosoyamada, A.; Aoki, K. On quantum related-key attacks on iterated Even–Mansour ciphers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2019, 102, 27–34. [Google Scholar] [CrossRef]
- Kuwakado, H.; Morii, M. Security on the quantum-type Even–Mansour cipher. In Proceedings of the International Symposium on Information Theory and Its Applications, Honolulu, HI, USA, 28–31 October 2012; pp. 312–316. [Google Scholar]
- Cui, J.; Guo, J.; Ding, S. Applications of Simon’s algorithm in quantum attacks on Feistel variants. Quantum Inf. Process 2021, 20, 117. [Google Scholar] [CrossRef]
- Dong, X.; Dong, B.; Wang, X. Quantum attacks on some feistel block ciphers. Des. Codes Cryptogr. 2020, 88, 1179–1203. [Google Scholar] [CrossRef]
- Dong, X.; Wang, X. Quantum key-recovery attack on Feistel structures. Sci. China Inf. Sci. 2018, 61, 102501. [Google Scholar] [CrossRef] [Green Version]
- Ito, G.; Hosoyamada, A.; Matsumoto, R.; Sasaki, Y.; Iwata, T. Quantum chosen-ciphertext attacks against Feistel ciphers. In Topics in Cryptology—CT-RSA 2019; Matsui, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 391–411. [Google Scholar]
- Ni, B.; Ito, G.; Dong, X.; Iwata, T. Quantum attacks against type-1 generalized Feistel ciphers and applications to CAST-256. In Progress in Cryptology—INDOCRYPT 2019; Hao, F., Ruj, S., Gupta, S.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 433–455. [Google Scholar]
- Hosoyamada, A.; Iwata, T. 4-round Luby-Rackoff construction is a qPRP. In Advances in Cryptology—ASIACRYPT 2019; Galbraith, S.D., Moriai, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 145–174. [Google Scholar]
- Leander, G.; May, A. Grover meets Simon - quantumly attacking the FX-construction. In Advances in Cryptology—ASIACRYPT 2017; Takagi, T., Peyrin, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 161–178. [Google Scholar]
- Chen, Y.L.; Lambooij, E.; Mennink, B. How to build pseudorandom functions from public random permutations. In Advances in Cryptology—CRYPTO 2019; Boldyreva, A., Micciancio, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 266–293. [Google Scholar]
- Bonnetain, X.; Naya-Plasencia, M.; Schrottenloher, A. Quantum security analysis of AES. IACR Trans. Symmetric Cryptol. 2019, 2, 55–93. [Google Scholar] [CrossRef]
- Hosoyamada, A.; Iwata, T. Provably quantum-secure tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2021, 1, 337–377. [Google Scholar] [CrossRef]
- Hosoyamada, A.; Sasaki, Y. Quantum collision attacks on reduced SHA-256 and SHA-512. In Advances in Cryptology—CRYPTO 2021; Malkin, T., Peikert, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 616–646. [Google Scholar]
- Kaplan, M.; Leurent, G.; Leverrier, A.; Naya-Plasencia, M. Breaking symmetric cryptosystems using quantum period finding. In Advances in Cryptology—CRYPTO 2021; Robshaw, M., Katz, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 207–237. [Google Scholar]
- Liu, H.; Yang, L. Quantum key recovery attack on SIMON32/64. Cybersecurity 2021, 4, 23. [Google Scholar] [CrossRef]
- Ni, B.; Dong, X.; Jia, K.; You, Q. Quantum collision attacks on reduced Simpira v2. IACR Trans. Symmetric Cryptol. 2021, 2, 222–248. [Google Scholar] [CrossRef]
- Chailloux, A.; Naya-Plasencia, M.; Schrottenloher, A. An efficient quantum collision search algorithm and implications on symmetric cryptography. In Advances in Cryptology—ASIACRYPT 2017; Takagi, T., Peyrin, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 211–240. [Google Scholar]
- Dong, X.; Sun, S.; Shi, D.; Gao, F.; Wang, X.; Hu, L. Quantum collision attacks on AES-Like hashing with low quantum random access memories. In Advances in Cryptology—ASIACRYPT 2020; Moriai, S., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 727–757. [Google Scholar]
- Kumar Chauhan, A.; Kumar, A.; Kumar Sanadhya, S. Quantum free-start collision attacks on double block length hashing with round-reduced AES-256. IACR Trans. Symmetric Cryptol. 2021, 1, 316–336. [Google Scholar] [CrossRef]
- Guo, T.; Wang, P.; Hu, L.; Ye, D. Attacks on beyond-birthday-bound MACs in the quantum setting. In Post-Quantum Cryptography—PQCrypto 2021; Cheon, J.H., Tillich, J.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 421–441. [Google Scholar]
- Bonnetain, X. Quantum key-recovery on full AEZ. In Proceedings of the International Conference on Selected Areas in Cryptography, Ottawa, ON, Canada, 16–18 August 2017; pp. 394–406. [Google Scholar]
- Xu, Y.; Liu, W.; Yu, W. Quantum forgery attacks on COPA, AES-COPA and marble authenticated encryption algorithms. Quantum Inf. Process 2021, 20, 131. [Google Scholar] [CrossRef]
- Shinagawa, K.; Iwata, T. Quantum attacks on Sum of Even–Mansour pseudorandom functions. Inf. Process. Lett. 2022, in press. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P. Quantum Attacks on Sum of Even–Mansour Construction with Linear Key Schedules. Entropy 2022, 24, 153. https://doi.org/10.3390/e24020153
Zhang P. Quantum Attacks on Sum of Even–Mansour Construction with Linear Key Schedules. Entropy. 2022; 24(2):153. https://doi.org/10.3390/e24020153
Chicago/Turabian StyleZhang, Ping. 2022. "Quantum Attacks on Sum of Even–Mansour Construction with Linear Key Schedules" Entropy 24, no. 2: 153. https://doi.org/10.3390/e24020153
APA StyleZhang, P. (2022). Quantum Attacks on Sum of Even–Mansour Construction with Linear Key Schedules. Entropy, 24(2), 153. https://doi.org/10.3390/e24020153