Research on Color Image Encryption Algorithm Based on Bit-Plane and Chen Chaotic System
Abstract
:1. Introduction
2. Basic Theory
2.1. Bit Plane
2.2. Chaotic Sequences
2.2.1. Logistic Chaotic Sequences
2.2.2. Chen Chaotic Sequences
3. The Proposed Encryption and Decryption Algorithms
3.1. Encryption Algorithm
3.1.1. Calculation of Internal Keys K1, K2, K3, and Key Values Kr
3.1.2. Formation of Logistic Chaotic Sequences and Chen Chaotic Sequences
3.1.3. Bit Transformation
3.1.4. Pixel Position Is Scrambled
3.1.5. Pixel Gray Value Diffusion
3.2. Decryption Algorithm
3.2.1. Pixel Grayscale Value Inverse Diffusion
3.2.2. Pixel Position Inverse Scrambling
4. Case Study
4.1. Experimental Results
4.2. Safety Analysis
4.2.1. Key Space Analysis
4.2.2. Information Entropy Analysis
4.2.3. Correlation Analysis
4.2.4. Histogram Analysis
4.2.5. Analysis of Shear Attack
4.2.6. Noise Attack Analysis
4.2.7. Differential Attack Analysis
4.2.8. Computational Complexity
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.; Chen, G.; Cheung, A.; Bhargava, B.; Lo, K.-T. On the design of perceptual MPEG-Video encryption algorithms. IEEE Trans. Circuits Syst. Video Technol. 2007, 17, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Liu, X.; Zheng, F.; Zhou, N. Flexible multiple-image encryption algorithm based on log-polar transform and double random phase encoding technique. J. Mod. Opt. 2013, 60, 1074–1082. [Google Scholar] [CrossRef]
- Chen, T.; Tsao, K.; Lee, Y. Yet another multiple-image encryption by rotating random grids. Signal Processing 2012, 92, 2229–2237. [Google Scholar] [CrossRef]
- Prasetyo, H.; Hsia, C.H. Lossless progressive secret sharing for grayscale and color images. Multimed. Tools Appl. 2019, 78, 24837–24862. [Google Scholar] [CrossRef]
- Enayatifar, R.; Abdullah, A.H.; Isnin, I.F. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt. Lasers Eng. 2014, 56, 83–93. [Google Scholar] [CrossRef]
- Zefreh, E.Z. An image encryption scheme based on a hybrid model of DNA computing, chaotic systems and hash functions. Multimed. Tools Appl. 2020, 79, 24993–25022. [Google Scholar] [CrossRef]
- Zhou, N.R.; Zhang, A.D.; Zheng, F.; Gong, L.H. Novel image compression–encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt. Laser Technol. 2014, 62, 152–160. [Google Scholar] [CrossRef]
- Wen, C.-C.; Wang, Q.; Huang, F.-M.; Yuan, Z.-S. Image adaptive encryption algorithm based on affine and compound chaos. J. Commun. 2012, 33, 119–127. [Google Scholar]
- Yulong, B.A.I.; Yang, Y.A.N.G.; Lihong, T.A.N.G. Design of a new multi-scroll chaotic system and its application in image encryption. J. Electron. Inf. 2021, 43, 436–444. [Google Scholar]
- Zhang, S.; Liu, L. A novel image encryption algorithm based on SPWLCM and DNA coding. Math. Comput. Simul. 2021, 190, 723–744. [Google Scholar] [CrossRef]
- Jarjar, M.; Hraoui, S.; Najah, S.; ZenKouar, S. Instructions New Technology of Color Image Encryption Based Two Improved Vigenere Laps Separated by a Genetic Mutation. Int. J. Saf. Secur. Eng. 2021, 11, 605–613. [Google Scholar] [CrossRef]
- Ran, Q.; Wang, L.; Ma, J.; Tan, L.; Yu, S. A quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections. Quantum Inf. Processing 2018, 17, 1–30. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, D.; Sun, K.; Rawat, U. Color image encryption using non-dominated sorting genetic algorithm with local chaotic search based 5 D chaotic map. Future Gener. Comput. Syst. 2020, 107, 333–350. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, M.; Wang, Z. A fast encryption algorithm of color image based on four-dimensional chaotic system. J. Vis. Commun. Image Represent. 2015, 33, 219–234. [Google Scholar] [CrossRef]
- Zhou, C.; Bao, L.; Chen, C. A new 1D chaotic system for image encryption. Signal Processing 2014, 97, 172–182. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Zhang, Y. A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt. Lasers Eng. 2015, 66, 10–18. [Google Scholar] [CrossRef]
- Liu, J.; Yang, D.; Zhou, H.; Chen, S. A digital image encryption algorithm based on bit-planes and an improved logistic map. Multimed. Tools Appl. 2018, 77, 10217–10233. [Google Scholar] [CrossRef]
- Li, Z.; Peng, C.; Tan, W.; Li, L. A Novel Chaos-Based Color Image Encryption Scheme Using Bit-Level Permutation. Symmetry 2020, 12, 1497. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.L. A color image encryption with heterogeneous bit-permutation and correlated chaos. Opt. Commun. 2015, 342, 51–60. [Google Scholar] [CrossRef]
- Mondal, B.; Behera, P.K.; Gangopadhyay, S. A secure image encryption scheme based on a novel 2D sine–cosine cross-chaotic (SC3) map. J. Real-Time Image Processing 2021, 18, 1–18. [Google Scholar] [CrossRef]
- Danial, R.; Mahdi, Y. Color Image Encryption using Hyper Chaos Chen. Int. J. Comput. Appl. 2015, 110, 9–12. [Google Scholar]
- Al-Hazaimeh, O.; Al-Jamal, M.; Bawaneh, M.; Alhindawi, N.; Hamdoni, B. A New Image Encryption Scheme Using Dual Chaotic Map Synchronization. Int. Arab. J. Inf. Technol. 2021, 18, 95–102. [Google Scholar]
- Ghadirli, H.; Nodehi, A.; Enayatifar, R. Color image DNA encryption using mRNA properties and non-adjacent coupled map lattices. Multimed. Tools Appl. 2020, 80, 1–25. [Google Scholar]
- Kumar, V.; Girdhar, A. A 2D logistic map and Lorenz-Rossler chaotic system based RGB image encryption approach. Multimed. Tools Appl. 2020, 80, 1–25. [Google Scholar] [CrossRef]
- Amani, H.; Yaghoobi, M. A New Approach in Adaptive Encryption Algorithm for Color Images Based on DNA Sequence Operation and Hyper-Chaotic System. Multimed. Tools Appl. 2019, 78, 21537–21556. [Google Scholar] [CrossRef]
- Adnan, J.; Tariq, S.; Atta, U. A color image privacy scheme established on nonlinear system of coupled differential equations. Multimed. Tools Appl. 2020, 79, 32487–32501. [Google Scholar]
- Zhou, S.; Wang, X.; Wang, M.; Zhang, Y. Simple colour image cryptosystem with very high level of security. Chaos Solitons Fractals 2020, 141, 110225. [Google Scholar] [CrossRef]
- Ping, P.; Fan, J.; Mao, Y.; Xu, F.; Gao, J. A chaos based image encryption scheme using digit-level permutation and block diffusion. IEEE Access 2018, 6, 67581–67593. [Google Scholar] [CrossRef]
- Li, P.; Xu, J.; Mou, J.; Yang, F. Fractionalorder 4D hyperchaotic memristive system and application in color image encryption. EURASIP J. Image Video Processing 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Hasanzadeh, E.; Yaghoobi, M. A novel color image encryption algorithm based on substitution box and hyper-chaotic system with fractal keys. Multimed. Tools Appl. 2019, 79, 1–19. [Google Scholar] [CrossRef]
- Arpacı, B.; Kurt, E.; Çelik, K.; Ciylan, B. Colored Image Encryption and Decryption with a New Algorithm and a Hyperchaotic Electrical Circuit. J. Electr. Eng. Technol. 2020, 15, 1413–1429. [Google Scholar] [CrossRef]
- Panwar, K.; Purwar, R.K.; Jain, A. Cryptanalysis and Improvement of a Color Image Encryption Scheme Based on DNA Sequences and Multiple 1D Chaotic Maps. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2019, 29, 24. [Google Scholar] [CrossRef]
Bit Plane | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|---|
Weight | ||||||||
Proportion | 50.196% | 25.098% | 12.549% | 6.275% | 3.137% | 1.569% | 0.784% | 0.392% |
Image | Plaintext Information Entropy | Ciphertext Information Entropy | |||
---|---|---|---|---|---|
This Paper’s Algorithm | Reference [23] | Reference [24] | |||
Lena | R channel | 7.2682 | 7.9993 | 7.9992 | 7.998 |
G channel | 7.5901 | 7.9993 | 7.9993 | 7.998 | |
B channel | 6.9951 | 7.9994 | 7.9992 | 7.997 | |
Mandrill | R channel | 7.7067 | 7.9994 | 7.9993 | 7.997 |
G channel | 7.4744 | 7.9994 | 7.9993 | 7.997 | |
B channel | 7.7522 | 7.9993 | 7.9993 | 7.997 | |
Peppers | R channel | 7.3388 | 7.9993 | 7.9993 | 7.998 |
G channel | 7.4962 | 7.9993 | 7.9993 | 7.997 | |
B channel | 7.0583 | 7.9993 | 7.9992 | 7.997 |
Image | Horizontal | Vertical | Diagonal | |
---|---|---|---|---|
Lena plaintext image | R | 0.9771 | 0.9889 | 0.9668 |
G | 0.9796 | 0.9875 | 0.9681 | |
B | 0.9517 | 0.9731 | 0.9269 | |
Lena—our method | R | 0.0040 | −0.0012 | 0.0113 |
G | −0.0013 | 0.0079 | 0.0037 | |
B | 0.0025 | −0.0007 | 0.0021 | |
Mandrill plaintext image | R | 0.9139 | 0.8561 | 0.8491 |
G | 0.8778 | 0.7862 | 0.7543 | |
B | 0.9153 | 0.9025 | 0.8637 | |
Mandrill—our method | R | −0.0028 | 0.0003 | −0.0141 |
G | 0.0044 | −0.0043 | −0.0110 | |
B | −0.0062 | −0.0116 | −0.0003 | |
Peppers plaintext image | R | 0.9637 | 0.9695 | 0.9647 |
G | 0.9869 | 0.9890 | 0.9820 | |
B | 0.9625 | 0.9700 | 0.9508 | |
Peppers—our method | R | −0.0104 | 0.0178 | −0.0049 |
G | 0.0180 | 0.0006 | −0.000015 | |
B | 0.0087 | −0.0063 | 0.0003 | |
House plaintext image | R | 0.9572 | 0.9476 | 0.9149 |
G | 0.9584 | 0.9606 | 0.9262 | |
B | 0.9746 | 0.9788 | 0.9568 | |
House—our method | R | 0.0013 | −0.0009 | −0.0145 |
G | 0.0069 | 0.0193 | 0.0004 | |
B | 0.0083 | −0.0057 | −0.0016 | |
Lena Reference [25] | R | −0.0064 | 0.0053 | 0.0061 |
G | 0.0018 | −0.0047 | 0.0027 | |
B | 0.0099 | 0.0043 | 0.0035 | |
Mandrill Reference [26] | R | −0.0058 | 0.0014 | −0.0027 |
G | −0.0023 | −0.0082 | 0.0090 | |
B | −0.0068 | 0.0065 | −0.0091 | |
Peppers Reference [12] | R | 0.0087 | −0.0063 | 0.0003 |
G | −0.0112 | −0.0076 | −0.0028 | |
B | −0.0060 | −0.0021 | 0.0018 |
Methods | Color Image Channel | NPCR (%) | UACI (%) |
---|---|---|---|
Lena—our method | R | 99.6136 | 33.4783 |
G | 99.5922 | 33.4769 | |
B | 99.6109 | 33.4916 | |
Mandrill—our method | R | 99.5991 | 33.4989 |
G | 99.6120 | 33.4906 | |
B | 99.5785 | 33.4114 | |
Peppers—our method | R | 99.5865 | 33.5472 |
G | 99.6052 | 33.3542 | |
B | 99.6094 | 33.4330 | |
House—our method | R | 99.6029 | 33.4591 |
G | 99.6117 | 33.5023 | |
B | 99.6124 | 33.5843 | |
Lena Reference [29] | R | 99.6016 | 33.2483 |
G | 99.6205 | 33.4977 | |
B | 99.6095 | 33.3877 | |
Lena Reference [30] | R | 99.6056 | 33.4108 |
G | 99.6147 | 33.4653 | |
B | 99.6235 | 33.4901 | |
Lena Reference [31] | R | 99.6096 | 33.4926 |
G | 99.6102 | 33.4620 | |
B | 99.5921 | 33.4961 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhao, B.; Wu, Z. Research on Color Image Encryption Algorithm Based on Bit-Plane and Chen Chaotic System. Entropy 2022, 24, 186. https://doi.org/10.3390/e24020186
Xu J, Zhao B, Wu Z. Research on Color Image Encryption Algorithm Based on Bit-Plane and Chen Chaotic System. Entropy. 2022; 24(2):186. https://doi.org/10.3390/e24020186
Chicago/Turabian StyleXu, Jiangjian, Bing Zhao, and Zeming Wu. 2022. "Research on Color Image Encryption Algorithm Based on Bit-Plane and Chen Chaotic System" Entropy 24, no. 2: 186. https://doi.org/10.3390/e24020186
APA StyleXu, J., Zhao, B., & Wu, Z. (2022). Research on Color Image Encryption Algorithm Based on Bit-Plane and Chen Chaotic System. Entropy, 24(2), 186. https://doi.org/10.3390/e24020186