An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem
Abstract
:1. Introduction
2. The Basic Concepts of the Residue Arithmetic
3. Reverse Conversion of the Residue Code to Conventional Representation
3.1. CRT-Base Conversion Method
3.2. MRS-Base Conversion Method
4. A Novel CRT-Base RNS-to-MRS Reverse Conversion Method
5. A Numerical Example of the Proposed Conversion Method
6. The Computational Cost of the Reverse Conversion Method
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szabo, N.S.; Tanaka, R.I. Residue Arithmetic and Its Application to Computer Technology; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Molahosseini, A.S.; de Sousa, L.S.; Chang, C.H. (Eds.) Embedded Systems Design with Special Arithmetic and Number Systems; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Akushskii, I.Y.; Juditskii, D.I. Machine Arithmetic in Residue Classes; Soviet Radio: Moscow, Russia, 1968. (In Russian) [Google Scholar]
- Amerbayev, V.M. Theoretical Foundations of Machine Arithmetic; Nauka: Alma-Ata, Kazakhstan, 1976. (In Russian) [Google Scholar]
- Omondi, A.R.; Premkumar, B. Residue Number Systems: Theory and Implementation; Imperial College Press: London, UK, 2007. [Google Scholar]
- Soderstrand, M.A.; Jenkins, W.K.; Jullien, G.A.; Taylor, F.J. (Eds.) Residue Number System Arithmetic: Modern Applications in Digital Signal Processing; IEEE Press: New York, NY, USA, 1986. [Google Scholar]
- Chernyavsky, A.F.; Danilevich, V.V.; Kolyada, A.A.; Selyaninov, M.Y. High-Speed Methods, and Systems of Digital Information Processing; Belarusian State University: Minsk, Belarus, 1996. (In Russian) [Google Scholar]
- Ananda Mohan, P.V. Residue Number Systems. Theory and Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Michaels, A.J. A maximal entropy digital chaotic circuit. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 717–720. [Google Scholar]
- Ding, C.; Pei, D.; Salomaa, A. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography; World Scientific: Singapore, 1996. [Google Scholar]
- Omondi, A.R. Cryptography Arithmetic: Algorithms and Hardware Architectures; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Burton, D.M. Elementary Number Theory, 7th ed.; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 6th ed.; Oxford University Press: London, UK, 2008. [Google Scholar]
- Akkal, M.; Siy, P. A new mixed radix conversion algorithm MRC-II. J. Syst. Archit. 2007, 53, 577–586. [Google Scholar] [CrossRef]
- Chakraborti, N.B.; Soundararajan, J.S.; Reddy, A.L.N. An implementation of mixed-radix conversion for residue number applications. IEEE Trans. Comput. 1986, 35, 762–764. [Google Scholar] [CrossRef]
- Huang, C.H. Fully parallel mixed-radix conversion algorithm for residue number applications. IEEE Trans. Comput. 1983, 32, 398–402. [Google Scholar] [CrossRef]
- Miller, D.F.; McCormick, W.S. An arithmetic free parallel mixed-radix conversion algorithm. IEEE Trans. Circuits Syst. II 1998, 45, 158–162. [Google Scholar] [CrossRef]
- Yassine, H.M.; Moore, W.R. Improved mixed-radix conversion for residue number architectures. IEE Proc. G - Circuits Devices Syst. 1991, 138, 120–124. [Google Scholar] [CrossRef]
- Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1998. [Google Scholar]
- Shoup, V. A Computational Introduction to Number Theory and Algebra, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Phatak, D.S.; Houston, S.D. New distributed algorithms for fast sign detection in residue number systems (RNS). J. Parallel Distrib. Comput. 2016, 97, 78–95. [Google Scholar] [CrossRef]
- Shenoy, M.A.P.; Kumaresan, R. A fast and accurate RNS scaling technique for high speed signal processing. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 929–937. [Google Scholar] [CrossRef]
- Vu, T.V. Efficient implementations of the Chinese Remainder Theorem for sign detection and residue decoding. IEEE Trans. Comput. 1985, 34, 646–651. [Google Scholar]
- Miller, D.D.; Altschul, R.E.; King, J.R.; Polky, J.N. Analysis of the residue class core function of Akushskii, Burcev, and Pak. In Residue Number System Arithmetic: Modern Applications in Digital Signal Processing; IEEE Press: Piscataway, NJ, USA, 1986; pp. 390–401. [Google Scholar]
- Gonnella, J. The application of core functions to residue number system. IEEE Trans. Signal Process. 1991, 39, 69–75. [Google Scholar] [CrossRef]
- Abtahi, M. Core function of an RNS number with no ambiguity. Comput. Math. Appl. 2005, 50, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Asif, S.; Khan, M.A.U. Modular multiplication using the core function in the residue number system. Appl. Algebra Eng. Commun. Comput. 2016, 27, 1–16. [Google Scholar] [CrossRef]
- Kolyada, A.A.; Selyaninov, M.Y. Generation of integral characteristics of symmetric-range residue codes. Cybern. Syst. Anal. 1986, 22, 431–437. [Google Scholar] [CrossRef]
- Selianinau, M. An efficient implementation of the CRT algorithm based on an interval-index characteristic and minimum-redundancy residue code. Int. J. Comput. Meth. 2020, 17, 2050004. [Google Scholar] [CrossRef]
- Lu, M.; Chiang, J.-S. A novel division algorithm for the residue number system. IEEE Trans. Comput. 1992, 41, 1026–1032. [Google Scholar] [CrossRef]
- Dimauro, G.; Impedovo, S.; Modugno, R.; Pirlo, G.; Stefanelli, R. Residue-to-binary conversion by the “quotient function”. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 2003, 50, 488–493. [Google Scholar] [CrossRef]
- Dimauro, G.; Impedovo, S.; Pirlo, G.; Salzo, A. RNS architectures for the implementation of the ’diagonal function’. Inf. Process. Lett. 2000, 73, 189–198. [Google Scholar] [CrossRef]
- Pirlo, G.; Impedovo, D. A new class of monotone functions of the residue number system. Int. J. Math. Models Meth. Appl. Sci. 2013, 7, 802–809. [Google Scholar]
- Hitz, M.A.; Kaltofen, E. Integer division in residue number systems. IEEE Trans. Comput. 1995, 44, 983–989. [Google Scholar] [CrossRef]
- Bergerman, M.V.; Lyakhov, P.A.; Voznesensky, A.S.; Bogaevskiy, D.V.; Kaplun, D.I. Designing reverse converter for data transmission systems from two-level RNS to BNS. J. Phys. Conf. Ser. 2020, 1658, 012005. [Google Scholar] [CrossRef]
- Daphni, S.; Vijula Grace, K.S. A review analysis of reverse converter based on RNS in signal processing. Int. J. Sci. Technol. Res. 2020, 9, 1686–1689. [Google Scholar]
- Sousa, L.; Paludo, R.; Martins, P.; Pettenghi, H. Towards the integration of reverse converters into the RNS channels. IEEE Trans. Comput. 2020, 69, 342–348. [Google Scholar] [CrossRef]
- Mojahed, M.; Molahosseini, A.S.; Zarandi, A.A.E. A multifunctional unit for reverse conversion and sign detection based on the 5-moduli set. Comp. Sci. 2021, 22, 101–121. [Google Scholar] [CrossRef]
- Salifu, A. New reverse conversion for four-moduli set and five-moduli set. J. Comp. Commun. 2021, 9, 57–66. [Google Scholar] [CrossRef]
- Taghizadeghankalantari, M.; TaghipourEivazi, S. Design of efficient reverse converters for Residue Number System. J. Circuits Syst. Comp. 2021, 30, 2150141. [Google Scholar] [CrossRef]
Input Residue | Number and Skope of LUTs | Output Residue Set |
---|---|---|
, | ||
, | ||
⋯ | ⋯ | ⋯ |
2, | ||
1, |
Modular Channel | Input Data | Output Data |
---|---|---|
, | ||
, | ||
⋯ | ⋯ | ⋯ |
, | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selianinau, M.; Povstenko, Y. An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem. Entropy 2022, 24, 242. https://doi.org/10.3390/e24020242
Selianinau M, Povstenko Y. An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem. Entropy. 2022; 24(2):242. https://doi.org/10.3390/e24020242
Chicago/Turabian StyleSelianinau, Mikhail, and Yuriy Povstenko. 2022. "An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem" Entropy 24, no. 2: 242. https://doi.org/10.3390/e24020242
APA StyleSelianinau, M., & Povstenko, Y. (2022). An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem. Entropy, 24(2), 242. https://doi.org/10.3390/e24020242