Asymmetric Relatedness from Partial Correlation
Abstract
:1. Introduction
2. Data Description and Preprocessing
Revealed Comparative Advantage Matrices
3. Methods: The biPCPG Framework
3.1. Methodology Description
3.2. Partial Correlations and Average Influence: Definitions
3.3. Average Correlation Matrix
3.4. Partial Correlation and Average Influence: Empirical Analysis
3.5. Network Construction
3.6. biPCPG Bootstrapping
4. Results
4.1. Descriptive Analysis of the biPCPG Network
4.2. Assortativity Analysis
4.2.1. Assortativity by Unordered Characteristics
4.2.2. Assortativity by Scalar Characteristics
4.2.3. Assortativity Results
- assortativity by sector section = = 0.08 (0.15 without FDR correction);
- assortativity by sector mean complexity rank = = 0.19 (0.31 without FDR correction).
4.3. Community Detection on the biPCPG Network
Community Detection Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMI | Adjusted Mutual Information |
BH | Benjamini–Hochberg |
biPCPG | Bipartite Partial Correlation Planar Graph |
BPM | International Monetary Fund’s Balance of Payments data |
EC | Economic Complexity |
FDR | False Discovery Rate |
HS | Harmonized System |
IMF | International Monetary Fund |
MST | Minimum Spanning Tree |
PCPG | Partial Correlation Planar Graph |
PMFG | Planar Maximally Filtered Graph |
RCA | Revealed Comparative Advantage |
UN-COMTRADE | United Nations Commodity Trade Statistics Database |
USD | United States Dollar |
WCO | World Customs Organization |
Appendix A. Fitness and Complexity of Economic Sectors
Appendix B. Confidence and Prediction Interval Calculations
Appendix C. Avg. Correlation and Avg. Influence Matrices Sorted by Community
Appendix D. Sector List
Sector Code | Sector Name | Sector Code | Sector Name |
---|---|---|---|
01 | Live animals | 61 | Knitted clothing |
02 | Meat | 62 | Not knitted clothing |
03 | Fish | 63 | Other textile |
04 | Edible products of animal origin | 64 | Footwear |
05 | Other animal products | 67 | Feathers |
06 | Plants | 68 | Articles of stone and plaster |
07 | Vegetables | 69 | Ceramic |
08 | Fruits | 70 | Glass |
09 | Coffee and tea | 71 | Jewellery |
10 | Cereals | 72 | Iron and steel |
11 | Products of milling | 73 | Iron and steel articles |
12 | Seeds and medicinal plants | 74 | Copper |
13 | Vegetable extracts | 76 | Aluminium |
14 | Other vegetables | 78 | Lead |
15 | Animal or vegetable fats | 79 | Zinc |
16 | Preparations of meat or fish | 81 | Other base metals |
17 | Sugar | 83 | Miscellaneous articles of base metal |
18 | Cocoa | 84 | Machinery and nuclear reactors |
19 | Preparations of cereals and milk | 85 | Electrical machinery |
20 | Preparations of plants | 86 | Railway |
21 | Other edible preparations | 87 | Vehicles |
22 | Beverages | 88 | Aircraft and spacecraft |
23 | Residues of food industries | 89 | Ships and boats |
24 | Tobacco | 90 | Instruments |
25 | Earths and stone | 93 | Arms and ammunition |
26 | Ores | 94 | Furniture |
27 | Mineral fuels | 96 | Miscellaneous manuf. articles |
28 | Inorganic chemicals | 97 | Art and antiques |
29 | Organic chemicals | BXSM_BP6_USD | Manufacturing Services |
30 | Pharmaceutical | BXSOCN_BP6_USD | Construction |
31 | Fertilizers | BXSOFIEX_BP6_USD | Financial Services |
32 | Pigments | XSOFIFISM_BP6_USD | FISIM |
33 | Cosmetics | BXSOGGS_BP6_USD | Government |
34 | Soaps | BXSOIN_BP6_USD | Insurance and pension |
35 | Glues | BXSOOBPM_BP6_USD | Consulting |
36 | Explosives | BXSOOBRD_BP6_USD | R&D |
37 | Photo and cinema goods | BXSOOBTT_BP6_USD | Technical Business |
38 | Other Chemicals | BXSOPCRAU_BP6_USD | Audiovisual |
39 | Plastics | BXSOPCRO_BP6_USD | Cultural |
40 | Rubber | BXSORL_BP6_USD | Intellectual Property |
41 | Skins and leather | BXSOTCMC_BP6_USD | Computer Services |
44 | Wood and Cork | BXSOTCMM_BP6_USD | Information |
46 | Straw manuf. | BXSOTCMT_BP6_USD | Telecommunication |
47 | Paper | BXSR_BP6_USD | Maintenance |
51 | Wool | BXSTRA_BP6_USD | Air Transport |
52 | Cotton | BXSTROT_BP6_USD | Other Transport |
53 | Other vegetables fibres | BXSTRPC_BP6_USD | Postal |
54 | Filaments | BXSTRS_BP6_USD | Sea Transport |
56 | Felt, ropes, wadding | BXSTVB_BP6_USD | Business Travel |
59 | Textile for industries | BXSTVP_BP6_USD | Personal Travel |
References
- Burgos, E.; Ceva, H.; Hernández, L.; Perazzo, R.P.; Devoto, M.; Medan, D. Two classes of bipartite networks: Nested biological and social systems. Phys. Rev. E-Nonlinear Soft Matter Phys. 2008, 78, 046113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontou, P.I.; Pavlopoulou, A.; Dimou, N.L.; Pavlopoulos, G.A.; Bagos, P.G. Network analysis of genes and their association with diseases. Gene 2016, 590, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez-García, V.; Muñoz, M.A. Ranking species in mutualistic networks. Sci. Rep. 2015, 5, 8182. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Newman, M.E. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E-Phys. Plasmas Fluids Relat. Interdiscip. Top. 2001, 64, 8. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 2001, 98, 404–409. [Google Scholar] [CrossRef]
- Conyon, M.J.; Muldoon, M.R. The small world of corporate boards. J. Bus. Financ. Account. 2006, 33, 1321–1343. [Google Scholar] [CrossRef]
- Ramasco, J.J.; Dorogovtsev, S.N.; Pastor-Satorras, R. Self-organization of collaboration networks. Phys. Rev. E-Phys. Plasmas Fluids Relat. Interdiscip. Top. 2004, 70, 10. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, E.; Napolitano, L.; Zaccaria, A.; Pietronero, L. Coherent diversification in corporate technological portfolios. PLoS ONE 2019, 14, e0223403. [Google Scholar] [CrossRef]
- Guillaume, J.L.; Latapy, M.; Le-Blond, S. Statistical Analysis of a P2P Query Graph Based on Degrees and Their Time-Evolution. In Distributed Computing—IWDC 2004, Lecture No ed.; Sen, A., Das, N., Das, S.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3326, pp. 126–137. [Google Scholar] [CrossRef]
- Taylor, P.J. The new geography of global civil society: NGOs in the world city network. Globalizations 2004, 1, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Doreian, P.; Batagelj, V.; Ferligoj, A. Generalized blockmodeling of two-mode network data. Soc. Netw. 2004, 26, 29–53. [Google Scholar] [CrossRef] [Green Version]
- Fowler, J.H. Legislative cosponsorship networks in the US House and Senate. Soc. Netw. 2006, 28, 454–465. [Google Scholar] [CrossRef]
- Hidalgo, C.A. Economic complexity theory and applications. Nat. Rev. Phys. 2021, 3, 92–113. [Google Scholar] [CrossRef]
- Pietronero, L.; Cristelli, M.; Gabrielli, A.; Mazzilli, D.; Pugliese, E.; Tacchella, A.; Zaccaria, A. Economic Complexity: “Buttarla in caciara” vs. a constructive approach. arXiv 2017, arXiv:1709.05272. [Google Scholar]
- Hidalgo, C.A.; Hausmann, R. The building blocks of economic complexity. Proc. Natl. Acad. Sci. USA 2009, 106, 10570–10575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacchella, A.; Cristelli, M.; Caldarelli, G.; Gabrielli, A.; Pietronero, L. A new metrics for countries’ fitness and products’ complexity. Sci. Rep. 2012, 2, 723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, H.; Vidmer, A. A Comparative Analysis of the Predictive Abilities of Economic Complexity Metrics Using International Trade Network. Complexity 2018, 2018, 2825948. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, E.; Chiarotti, G.L.; Zaccaria, A.; Pietronero, L. Complex economies have a lateral escape from the poverty trap. PLoS ONE 2017, 12, e0168540. [Google Scholar] [CrossRef] [Green Version]
- Angelini, O.; Di Matteo, T. Complexity of Products: The Effect of Data Regularisation. Entropy 2018, 20, 814. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, C.A.; Klinger, B.; Barabasi, A.L.; Hausmann, R. The Product Space Conditions the Development of Nations. Science 2007, 317, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Zaccaria, A.; Cristelli, M.; Tacchella, A.; Pietronero, L. How the taxonomy of products drives the economic development of countries. PLoS ONE 2014, 9, e0113770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaccaria, A.; Mishra, S.; Cader, M.; Pietronero, L. Integrating Services in the Economic Fitness Approach. In Policy Research Working Paper No. 8485.; World Bank: Washington, DC, USA, 2018; Available online: https://openknowledge.worldbank.org/handle/10986/29938 (accessed on 13 February 2019).
- Stojkoski, V.; Utkovski, Z.; Kocarev, L. The impact of services on economic complexity: Service sophistication as route for economic growth. PLoS ONE 2016, 11, e0161633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albora, G.; Pietronero, L.; Tacchella, A.; Zaccaria, A. Product Progression: A machine learning approach to forecasting industrial upgrading. arXiv 2021, arXiv:2105.15018. [Google Scholar]
- Hidalgo, C.A.; Balland, P.A.; Boschma, R.; Delgado, M.; Feldman, M.; Frenken, K.; Glaeser, E.; He, C.; Kogler, D.F.; Morrison, A.; et al. The Principle of Relatedness. Springer Proc. Complex. 2018, 1, 451–457. [Google Scholar] [CrossRef]
- Teece, D.J.; Rumelt, R.; Dosi, G.; Winter, S. Understanding corporate coherence: Theory and evidence. J. Econ. Behav. Organ. 1994, 23, 1–30. [Google Scholar] [CrossRef]
- Zhou, T.; Ren, J.; Medo, M.; Zhang, Y.C. Bipartite network projection and personal recommendation. Phys. Rev. E 2007, 76, 046115. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, E.; Cimini, G.; Patelli, A.; Zaccaria, A.; Pietronero, L.; Gabrielli, A. Unfolding the innovation system for the development of countries: Coevolution of Science, Technology and Production. Sci. Rep. 2019, 9, 16440. [Google Scholar] [CrossRef]
- Kenett, D.Y.; Tumminello, M.; Madi, A.; Gur-Gershgoren, G.; Mantegna, R.N.; Ben-Jacob, E. Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market. PLoS ONE 2010, 5, e0015032. [Google Scholar] [CrossRef] [Green Version]
- Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R.N. A tool for filtering information in complex systems. Proc. Natl. Acad. Sci. USA 2005, 102, 10421–10426. [Google Scholar] [CrossRef] [Green Version]
- Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
- Mantegna, R.N.; Stanley, H.E. An Introduction to Econophysics: Correlations and Complexity in Finance; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Tumminello, M.; Di Matteo, T.; Aste, T.; Mantegna, R.N. Correlation based networks of equity returns sampled at different time horizons. Eur. Phys. J. B 2007, 55, 209–217. [Google Scholar] [CrossRef]
- Saenz de Pipaon Perez, C. biPCPG Python Package. Available online: http://www.github.com/cspipaon/biPCPG (accessed on 6 January 2022).
- Saenz de Pipaon Perez, C. biPCPG Python Package Documentation. Available online: http://bipcpg.readthedocs.io (accessed on 6 January 2022).
- International Monetary Fund Data. International Trade in Services and the Comparative Advantage of Nations. Available online: https://data.imf.org/ITS (accessed on 13 February 2019).
- World Customs Organization. Harmonized System Nomenclature 2007 Edition. Available online: http://www.wcoomd.org/en/topics/nomenclature/instrument-and-tools/hs_nomenclature_previous_editions/hs_nomenclature_table_2007.aspx (accessed on 13 February 2019).
- Balassa, B. Trade Liberalisation and “Revealed” Comparative Advantage. Manch. Sch. 1965, 33, 99–123. [Google Scholar] [CrossRef]
- Student. Probable error of a correlation coefficient. Biometrika 1908, 6, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Miller, R.G. Simultaneous Statistical Inference, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1981; p. 166. [Google Scholar]
- Tumminello, M.; Miccichè, S.; Lillo, F.; Piilo, J.; Mantegna, R.N. Statistically validated networks in bipartite complex systems. PLoS ONE 2011, 6, e0017994. [Google Scholar] [CrossRef] [Green Version]
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 2014, 9, e0098679. [Google Scholar] [CrossRef]
- Newman, M.E. Mixing patterns in networks. Phys. Rev. E-Phys. Plasmas Fluids Relat. Interdiscip. Top. 2003, 67, 13. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E-Nonlinear Soft Matter Phys. 2004, 69, 026113. [Google Scholar] [CrossRef] [Green Version]
- Clauset, A.; Newman, M.E.; Moore, C. Finding community structure in very large networks. Phys. Rev. E-Phys. Plasmas Fluids Relat. Interdiscip. Top. 2004, 70, 6. [Google Scholar] [CrossRef] [Green Version]
- Leicht, E.A.; Newman, M.E. Community structure in directed networks. Phys. Rev. Lett. 2008, 100, 118703. [Google Scholar] [CrossRef]
- Traag, V.A.; Waltman, L.; van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019, 9, 5233. [Google Scholar] [CrossRef]
- Brandes, U.; Delling, D.; Gaertler, M.; Gorke, R.; Hoefer, M. On Modularity Clustering. IEEE Trans. Knowl. Data Eng. 2008, 20, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Vinh, N.X.; Epps, J.; Bailey, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 2010, 11, 2837–2854. [Google Scholar]
- Tacchella, A.; Zaccaria, A.; Miccheli, M.; Pietronero, L. Relatedness in the Era of Machine Learning. arXiv 2021, arXiv:2103.06017. [Google Scholar]
- Onnela, J.P.; Kaski, K.; Kertész, J. Clustering and information in correlation based financial networks. Eur. Phys. J. B 2004, 38, 353–362. [Google Scholar] [CrossRef]
- Kojaku, S.; Masuda, N. Constructing networks by filtering correlation matrices: A null model approach. Proc. R. Soc. A Math. Phys. Eng. Sci. 2019, 475, 12–14. [Google Scholar] [CrossRef] [Green Version]
- Cristelli, M.; Gabrielli, A.; Tacchella, A.; Caldarelli, G.; Pietronero, L. Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products. PLoS ONE 2013, 8, e0070726. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, E.; Zaccaria, A.; Pietronero, L. On the convergence of the Fitness-Complexity algorithm. Eur. Phys. J. Spec. Top. 2016, 225, 1893–1911. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
Variable & Sector | Corr. | Corr. | Corr. | Partial Corr. | Influence | ||
---|---|---|---|---|---|---|---|
Ex. 1 | p | Cereals | 0.024388 | −0.017268 | 0.028770 | 0.024899 | −0.000511 |
p′ | Telecommunication | ||||||
p″ | Other textile | ||||||
Ex. 2 | p | Audiovisual | 0.283807 | 0.772049 | 0.368241 | −0.000834 | 0.284641 |
p′ | Sea Transport | ||||||
p″ | Cultural | ||||||
Ex. 3 | p | Pigments | 0.602575 | 0.064069 | 0.040062 | 0.601727 | 0.000848 |
p′ | Aluminium | ||||||
p″ | Knitted clothing | ||||||
Ex. 4 | p | Vehicles | 0.025574 | 0.781281 | 0.542898 | −0.760384 | 0.785958 |
p′ | Earths and stone | ||||||
p″ | Plastics |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saenz de Pipaon Perez, C.; Zaccaria, A.; Di Matteo, T. Asymmetric Relatedness from Partial Correlation. Entropy 2022, 24, 365. https://doi.org/10.3390/e24030365
Saenz de Pipaon Perez C, Zaccaria A, Di Matteo T. Asymmetric Relatedness from Partial Correlation. Entropy. 2022; 24(3):365. https://doi.org/10.3390/e24030365
Chicago/Turabian StyleSaenz de Pipaon Perez, Carlos, Andrea Zaccaria, and Tiziana Di Matteo. 2022. "Asymmetric Relatedness from Partial Correlation" Entropy 24, no. 3: 365. https://doi.org/10.3390/e24030365
APA StyleSaenz de Pipaon Perez, C., Zaccaria, A., & Di Matteo, T. (2022). Asymmetric Relatedness from Partial Correlation. Entropy, 24(3), 365. https://doi.org/10.3390/e24030365