Information Dark Energy Can Resolve the Hubble Tension and Is Falsifiable by Experiment
Abstract
:1. Introduction
2. Information Energy as Dark Energy
3. Dynamic Information Energy: Time History
4. Information Energy Can Account for H0 Tension
5. Information Dark Energy Is Falsifiable by Experiment
6. Discussion
6.1. H0 and σ8 Tensions
6.2. Cosmological Constant Problem
6.3. Cosmological Coincidence Problem
6.4. Cosmic Isotropy
6.5. Falsifiable
6.6. Information Dark Energy Compared to Λ and Quintessence
6.7. Constant Information Energy Density from Feedback?
6.8. Can Information Energy Also Emulate Dark Matter Effects?
6.9. A Different Future?
7. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Plank, C.; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Bnaday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI, Cosmological Parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Choi, S.K.; Hasselfield, M.; Patty Ho, S.-P.; Koopman, B.; Lungu, M.; Abitboi, M.H.; Addison, G.E.; Ade, P.A.R.; Aiola, S.; Alonso, D.; et al. The Atacama Cosmology Telescope: A measurement of the cosmic microwave power spectra at 98 and 150 GHz. J. Cosmol. Astropart. Phys. 2020, 12, 045. [Google Scholar] [CrossRef]
- Abbott, T.M.C.; Abdalla, F.B.; Annis, J.; Bechtol, K.; Blazek, J.; Benson, B.A.; Bernstein, R.A.; Bernstein, G.M.; Bertin, E.; Brooks, D.; et al. Dark Energy Survey year 1 results: A precise H0 measurement from DES, Bao, D/H data. Mon. Not. R. Astron. Soc. 2018, 480, 3879. [Google Scholar] [CrossRef]
- Reiss, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards provide a 1% foundation for determination of H0 and strong evidence for physics beyond ΛCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Reiss, A.G.; Casertano, S.; Yuan, W.; Bowers, J.B.; Macri, L.M.; Zinn, J.C.; Scolnic, D. Cosmic distances calibrated to 1% precision with GAIA EDR3 parallaxes and Hubble Space Telescope photometry of 75 Milky Way Cepheids confirm tension with ΛCDM. Astrophys. J. 2021, 908, L6. [Google Scholar] [CrossRef]
- Reiss, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Breuval, L.; Brink, T.G.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. arXiv 2021, arXiv:2112.04510. [Google Scholar]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.-F.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW-XIII. A 2.4% measurement of H0 from lensed quasars: Tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 2020, 498, 1420. [Google Scholar] [CrossRef]
- Pesce, D.W.; Braatz, J.A.; Reid, M.J.; Riess, A.G.; Scolnic, D.; Condon, J.J.; Gao, F.; Henkel, C.; Impellizzeri, C.M.V.; Kuo, C.Y.; et al. The megamaser Cosmology Project. XIII. Combined Hubble constant constraints. Astrophys. J. 2020, 891, L1. [Google Scholar] [CrossRef] [Green Version]
- Blakeslee, J.P.; Jensen, J.B.; Chung-Pei Ma Milne, P.A.; Greene, J.E. The Hubble Constant from Infrared surface brightness fluctuation distances. Astrophys. J. 2021, 911, 65. [Google Scholar] [CrossRef]
- Bernal, J.L.; Peacock, A. Conservative Cosmology: Combining data with allowances for unknown systematics. J. Cosmol. Astropart. Phys. 2018, 7, 002. [Google Scholar] [CrossRef] [Green Version]
- Verde, L.; Treu, T.; Riess, A.G. Institute for Theoretical Physics Workshop Meeting Report: Tensions between the early and late Universe. Nat. Astron. 2019, 3, 891. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the Realm of the Hubble tension, a Review of Solutions. Class. Quantum Gravity 2021, 38, 153001. [Google Scholar] [CrossRef]
- Gough, M.P. A Dynamic Dark Information Energy Consistent with Planck Data. Entropy 2014, 16, 1902. [Google Scholar] [CrossRef] [Green Version]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 3, 183. [Google Scholar] [CrossRef]
- Landauer, R. Information is physical. Phys. Today 1991, 44, 23. [Google Scholar] [CrossRef]
- Toyabe, S.; Sagawa, T.; Ueda, M.; Muneyuki, E.; Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 2010, 6, 988. [Google Scholar] [CrossRef] [Green Version]
- Berut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, A.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187. [Google Scholar] [CrossRef]
- Jun, Y.; Gavrilov, M.; Bechhoefer, J. High-Precision Test of Landauer’s Principle in a Feedback Trap. Phys. Rev. Let. 2014, 113, 190601. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.I.; Xiong, T.P.; Rehan, K.; Zhou, F.; Liang, D.F.; Chen, L.; Zhang, J.Q.; Yang, W.L.; Ma, Z.H.; Feng, M. Single Atom Demonstration of the Quantum Landauer Principle. Phys. Rev. Lett. 2018, 120, 210601. [Google Scholar] [CrossRef] [Green Version]
- Zeilinger, A. A Foundational Principle of Quantum Mechanics. Found. Phys. 1999, 29, 631. [Google Scholar] [CrossRef]
- Gough, M.P.; Carozzi, T.; Buckley, A.M. On the similarity of Information Energy to Dark Energy. arXiv 2006, arXiv:Astro-ph/0603084. [Google Scholar] [CrossRef]
- Peebles, P.J.E. Principles of Physical Cosmology; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Frampton, P.H.; Hsu, S.D.H.; Kephart, T.W.; Reeb, D. What is the entropy of the universe? Class. Quantum Gravity 2009, 26, 145005. [Google Scholar] [CrossRef] [Green Version]
- Egan, C.A.; Lineweaver, C.H. A larger estimate of the entropy of the universe. Astrophys. J. 2010, 710, 1825. [Google Scholar] [CrossRef] [Green Version]
- Gough, M.P. Information Equation of State. Entropy 2008, 10, 150. [Google Scholar] [CrossRef]
- Gough, M.P. Holographic Dark Information Energy. Entropy 2011, 13, 924. [Google Scholar] [CrossRef]
- Gough, M.P. Holographic Dark Information Energy: Predicted Dark Energy Measurement. Entropy 2013, 15, 1133. [Google Scholar] [CrossRef]
- Li, C.; White, S.D.M. The distribution of stellar mass in the low-redshift universe. Mon. Not. R. Astron. Soc. 2009, 398, 2177. [Google Scholar] [CrossRef]
- Gallazzi, A.; Brinchmann, J.; Charlot, S.; White, S.D.M. A census of metals and baryons in stars in the local universe. Mon. Not. R. Astron. Soc. 2008, 383, 1439. [Google Scholar] [CrossRef] [Green Version]
- Moustakas, J.; Coil, A.L.; Aird, J.; Blanton, M.R.; Cool, R.J.; Eisenstein, D.J.; Mendez, A.J.; Wong, K.C.; Zhu, G.; Arnouts, S. PRIMUS: Constraints on star formation quenching and Galaxy merging and the evolution of the stellar mass function from z = 0–1. Astrophys. J. 2013, 767, 50. [Google Scholar] [CrossRef] [Green Version]
- Bielby, R.; Hudelot, P.; McCraken, H.J.; Ilbert, O.; Daddi, E.; Le Fevre, O.; Gonzalez-Perez, V.; Kneib, J.-P.; Marmo, C.; Mellier, Y.; et al. The WIRCam Deep Survey-I. Counts, colours, and mass-functions derived from near-infrared imaging in the CFHTLS deep fields. Astron. Astrophys. 2012, 545, A23. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gonzalez, P.G.; Rieke, G.H.; Villar, V.; Barro, G.; Blaylock, M.; Egami, E.; Gallego, J.; Gil de Paz, A.; Pascual, S.; Zamorano, J.; et al. The stellar mass assembly of galaxies from z = 0–4: Analysis of a sample selected in the rest-frame near infrared with Spitzer. Astrophys. J. 2008, 675, 234. [Google Scholar] [CrossRef] [Green Version]
- Ilbert, O.; McCraken, H.J.; LeFevre, O.; Capak, P.; Dunlop, J.; Karim, A.; Renzini, M.A.; Caputi, K.; Boissier, S.; Arnouts, S.; et al. Mass assembly in quiescent and star-forming Galaxies since z > 4 from UltraVISTA. Astron. Astrophys. 2013, 556, A55. [Google Scholar] [CrossRef] [Green Version]
- Muzzin, A.; Marchesini, D.; Stefanon, S.; Franx, M.; McCraken, H.J.; Milvang-Jensen, B.; Dunlop, J.S.; Fynbo, J.P.U.; Brammer, G.; Labbe, I.; et al. The evolution of the stellar mass functions of star-forming and quiescent galaxies to z = 4 from the COSMOS/UltraVISTA survey. Astrophys. J. 2013, 777, 18. [Google Scholar] [CrossRef] [Green Version]
- Arnouts, S.; Walcher, C.J.; LeFevre, O.; Zamorani, G.; Ilbert, O.; LeBrun, V.; Pozzetti, L.; Bardelli, S.; Tresse, L.; Zucca, E.; et al. The SWIRE-VVDS-CFHTLS surveys: Stellar Assembly over the last 10 Gyr. Astron. Astrophys. 2007, 476, 137. [Google Scholar] [CrossRef] [Green Version]
- Pozzetti, L.; Bolzonella, M.; Zucca, E.; Zamorani, G.; Lilly, S.; Renzini, A.; Moresco, M.; Mignoli, M.; Cassata, P.; Tasca, L.; et al. zCOSMOS-10 k bright spectroscopic sample. The bimodality in the galaxy stellar mass function. Astron. Astrophys. 2010, 523, A13. [Google Scholar] [CrossRef] [Green Version]
- Kajisawa, M.; Ichikawa, T.; Tanaka, I.; Konishi, M.; Yamada, T.; Akiyama, M.; Suzuki, R.; Tokoku, C.; Uchimoto, Y.K.; Yoshikawa, T.; et al. MOIRCS deep survey IV evolution of galaxy stellar mass function back to z~3. Astrophys. J. 2009, 702, 1393. [Google Scholar] [CrossRef]
- Marchesini, D.; van Dokkum, P.G.; Forster Schreiber, N.M.; Franx, M.; Labbe, I.; Wuyts, S. The evolution of the stellar mass function of galaxies from z = 4 and the first comprehensive analysis of its uncertainties. Astrophys. J. 2009, 701, 1765. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.A.; Dickinson, M.; Elbaz, D.; Morrison, G.; Giavalisco, M.; Ivison, R.; Papovich, C.; Scott, D.; Buat, V.; Burgarella, D.; et al. GOODS-HERSCHEL measurements of the dust attenuation of typical star forming galaxies at high redshift. Astrophys. J. 2012, 744, 154. [Google Scholar] [CrossRef] [Green Version]
- Caputi, K.J.; Cirasuolo, M.; Jdunlop, J.S.; McLure, R.J.; Farrah, D.; Almaini, O. The stellar mass function of the most massive Galaxies at 3 < z < 5 in the UKIDSS Ultra Deep Survey. Mon. Not. R. Astron. Soc. 2011, 413, 162. [Google Scholar]
- Gonzalez, V.; Labbe, I.; Bouwens, R.J.; Illingworth, G.; Frank, M.; Kriek, M. Evolution of galaxy stellar mass functions, mass densities, and mass-to light ratios from z~7 to z~4. Astrophys. J. 2011, 735, L34. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Ferguson, H.C.; Wiklind, T.; Dahlen, T.; Dikinson, M.E.; Giavalisco, M.; Grogin, N.; Papovich, C.; Messias, H.; Guo, Y.; et al. How do star-forming galaxies at z > 3 assemble their masses? Astrophys. J. 2012, 752, 66. [Google Scholar] [CrossRef] [Green Version]
- Yabe, K.; Ohta, K.; Iwata, I.; Sawicki, M.; Tamura, N.; Akiyama, M.; Aoki, K. The stellar populations of Lyman break galaxies at z~5. Astrophys. J. 2009, 693, 507. [Google Scholar] [CrossRef] [Green Version]
- Labbe, I.; Oesch, P.A.; Bouwens, R.J.; Illingworth, G.D.; Magee, D.; Gonzalez, V.; Carollo, C.M.; Franx, M.; Trenti, M.; van Dokkkum, P.G.; et al. The spectral energy distributions of z = 8 galaxies from the IRAC ultra deep fields. Astrophys. J. 2013, 777, L19. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.; Norberg, P.; Baugh, C.M.; Frenk, C.S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Colless, M.; Collins, C.; Couch, W.; et al. The 2dF galaxy redshift survey. Mon. Not. R. Astron. Soc. 2001, 326, 255. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, M.; Papovich, C.; Ferguson, H.C.; Budavari, T. The evolution of the global stellar mass density a 0 < z < 3. Astrophys. J. 2003, 587, 25. [Google Scholar]
- Rudnick, G.; Rix, H.-W.; Franx, M.; Labbe, I.; Blanton, M.; Daddi, E.; Forster-Schreiber, N.M.; Moorwood, A.; Rottgering, H.; Trujillo, I.; et al. The rest-frame optical luminosity density, colour, and stellar mass density of the universe from z = 0 to z = 3. Astrophys. J. 2003, 599, 847. [Google Scholar] [CrossRef]
- Brinchmann, J.; Ellis, R.S. The mass assembly and star formation characteristics of field galaxies of known morphology. Astrophys. J. 2000, 536, L77. [Google Scholar] [CrossRef] [Green Version]
- Elsner, F.; Feulner, G.; Hopp, U. The impact of Spitzer infrared data on stellar mass estimates. Astron. Astrophys. 2008, 477, 503. [Google Scholar] [CrossRef]
- Drory, N.; Salvato, M.; Gabasch, A.; Bender, R.; Hopp, U.; Feuler, G.; Pannella, M. The stellar mass function of galxies to z~5. Astrophys. J. 2005, 619, L131. [Google Scholar] [CrossRef]
- Drory, N.; Alvarez, M. The contribution of star formation and merging to stellar mass buildup in galaxies. Astrophys. J. 2008, 680, 41. [Google Scholar] [CrossRef]
- Fontana, A.; Donnarumma, I.; Vanzella, E.; Giallongo, E.; Menci, N.; Nonimo, M.; Saracco, P.; Cristiani, S.; D’Odorico, S.; Poli, F. The assembly of massive galaxies from near Infrared observations of Hubble deep-field south. Astrophys. J. 2003, 594, L9. [Google Scholar] [CrossRef] [Green Version]
- Fontana, A.; Salimeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; et al. The galaxy mass function up to z = 4 in the GOODS-MUSIC sample. Astron. Astrophys. 2006, 459, 745. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.G. CALTECH faint galaxy redshift survey. Astrophys. J. 2002, 567, 672. [Google Scholar] [CrossRef]
- Conselice, C.J.; Blackburne, J.A.; Papovich, C. The luminosity, stellar mass, and number density evolution of field galaxies. Astrophys. J. 2005, 620, 564. [Google Scholar] [CrossRef] [Green Version]
- Borch, A.; Meisenheimer, K.; Bell, E.F.; Rix, H.-W.; Wolf, C.; Dye, S.; Kleinheinrich, M.; Kovacs, Z.; Wisotzki, L. The stellar masses of 25,000 galaxies at 0.2 < z < 1.0 estimated by COMBO-17 survey. Astron. Astrophys. 2006, 453, 869. [Google Scholar]
- Madau, P.; Dickinson, M. Cosmic Star Formation History. Ann. Rev. Astron. Astrophys. 2014, 52, 415. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.-K.; Makiya, R.; Menard, B.; Komatsu, E. The Cosmic Thermal History Probed by Sunyaev Zeldovich Effect Tomography. Astrophys. J. 2020, 902, 56. [Google Scholar] [CrossRef]
- T’Hooft, G. Obstacles on the way towards the quantization of space, time and matter- and possible solutions. Stud. Hist. Philos. Mod. Phys. 2001, 32, 157. [Google Scholar] [CrossRef]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377. [Google Scholar] [CrossRef] [Green Version]
- Buosso, R. The holographic principle. Rev. Mod. Phys. 2002, 74, 825. [Google Scholar] [CrossRef] [Green Version]
- Friedmann, A. On the Curvature of Space. Gen. Relativ. Gravit. 1999, 31, 1991. [Google Scholar] [CrossRef]
- Ade, P.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Plank Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar]
- Ade, P.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Plank Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Ade, P.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalipi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; et al. Planck Collaboration. Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. 2016, 594, A14. [Google Scholar]
- Chevallier, M.; Polarski, D. Accelerating universes with scaling dark matter. Int. J. Mod. Phys. 2001, D10, 213. [Google Scholar] [CrossRef] [Green Version]
- Keeley, R.; Joudaki, S.; Kaplinghat, M.; Kirkby, D. Implications of a transition in the dark energy equation of state for the H0 and σ8 tensions. J. Cosmol. Astropart. Phys. 2019, 12, 035. [Google Scholar] [CrossRef] [Green Version]
- Bull, P.; Akrami, Y.; Adamek, J.; Baker, T.; Bellini, E.; Beltran-Jimenez, J.; Bentivegna, E.; Camera, S.; Clesse, S.; Davis, J.H.; et al. Beyond ΛCDM: Problems, solutions, and the road ahead. Phys. Dark Universe 2016, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Velten, H.G.; vom Marttens, R.F.; Zimdahi, W. Aspects of the cosmological coincidence problem. Eur. Phys. J. C 2014, 74, 3160. [Google Scholar] [CrossRef] [Green Version]
- Migkas, K.; Schellenberger, G.; Reiprich, T.H.; Pacaud, F.; Ramos-ceja, M.E.; Lovisari, L. Probing cosmic isotropy with a new X-ray galaxy cluster sample through the Lx -T scaling relation. Astron. Astrophys. 2020, 636, A15. [Google Scholar] [CrossRef] [Green Version]
- ESA Euclid Science Requirements Document. Available online: https://sci.esa.int/web/euclid/-/42822-scird-for-euclid (accessed on 27 July 2021).
- Guzzo, L.; Pierleoni, M.; Meneux, B.; Branchini, E.; LeFevre, O.; Marinoni, C.; Garilli, B.; Blaizot, J.; DeLucia, G.; Pollo, A.; et al. A test of the nature of cosmic acceleration using galaxy redshift distortions. Nature 2008, 451, 541. [Google Scholar] [CrossRef] [PubMed]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark energy and the accelerating universe. Ann. Rev. Astron. Astrophys. 2008, 46, 385. [Google Scholar] [CrossRef] [Green Version]
- McGaugh, S.S.; Lelli, F.; Schombert, J.M. The Radial Acceleration Relation in Rotationally Supported Galaxies. Phys. Rev. Lett. 2016, 117, 201101. [Google Scholar] [CrossRef] [PubMed]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Pawlowski, M.S. One Law to Rule them all: The Radial Acceleration relation of Galaxies. Astrophys. J. 2017, 836, 152. [Google Scholar] [CrossRef] [Green Version]
- Viola, M.; Cacciato, M.; Brouwer, M.; Kuijken, K.; Hoekstra, H.; Norberg, P.; Robotham, A.S.G.; van Uitert, E.; Alpasian, M.; Baldry, I.K.; et al. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data. Mon. Not. R. Astron. Soc. 2015, 452, 3529. [Google Scholar] [CrossRef] [Green Version]
- Markevich, M.; Gonzalez, A.H.; Clowe, D.; Vikhlinin, A.; Forman, W.; Jones, C.; Murray, S.; Tucker, W. Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster. Astrophys. J. 2004, 606, 819. [Google Scholar] [CrossRef]
- Harvey, D.; Massey, R.; Kitching, T.; Taylor, A.; Tittley, E. The non gravitational interactions of dark matter in colliding galaxy clusters. Science 2015, 347, 1462. [Google Scholar] [CrossRef] [Green Version]
- Massey, R.; Williams, L.; Smit, R.; Swinbank, M.; Kitching, T.D.; Harvey, D.; Jauzac, M.; Israel, H.; Clowe, D.; Edge, A.; et al. The behaviour of dark matter associated with four bright Cluster galaxies in the 10 kpc core of Abell 3827. Mon. Not. R. Astron. Soc. 2015, 449, 3393. [Google Scholar] [CrossRef]
- Brouwer, M.M.; Oman, K.A.; Valentijn, E.A.; Bilicki, M.J.; Heymans, C.; Hoekstra, H.; Napolitano, N.R.; Roy, N.; Tortora, C.; Wright, A.H.; et al. The weak lensing radial acceleration relation: Constraining modified gravity and cold dark matter theories. Astron. Astrophys. 2021, 650, A113. [Google Scholar] [CrossRef]
- Sobral, D.; Small, I.; Best, P.N.; Geach, J.E.; Yuichi, M.; Stott, J.P.; Cirasuolo, M.; Jaron, K. A large Hα survey at z = 2.23, 1.47, 0.84 and 0.40: The 11 Gyr evolution of star-forming galaxies from HiZELS. Mon. Not. R. Astron. Soc. 2013, 428, 1128. [Google Scholar] [CrossRef] [Green Version]
Information, N, Bits | Typical Temperature T, °K | Information Energy N kB T ln2, Joules | Information Energy/ Universe Baryon mc2 | |
---|---|---|---|---|
Stellar heated gas and dust | ~1086 | ~107 | ~1070 | ~1 |
1022 stars | 1079–1081 | ~107 | 1063–1065 | 10−7–10−5 |
Stellar black holes | 1097–6 × 1097 | ~10−7 | 1067–6 × 1067 | 10−3–6 × 10−3 |
Super massive black holes | 10102–3 × 10104 | ~10−14 | 1065–3 × 1067 | 10−5–3 × 10−3 |
Cold dark matter | ~2 × 1088 | <102 | <1067 | <10−3 |
CMB photons | 1088–2 × 1089 | 2.7 | 3 × 1065–6 × 1066 | 3 × 10−5–6 × 10−4 |
Relic neutrinos | 1088–5 × 1089 | 2 | 2 × 1065–1067 | 2 × 10−5–10−3 |
Dark Energy Property Required to Fit Observations | Cosmological Constant | Scalar Fields/ Quintessence | Information Energy |
---|---|---|---|
Account quantitatively for present dark energy value | Not by orders of magnitude | Only by much fine tuning | Yes, directly ∼1070 J |
Resolve ‘Cosmological constant problem’ | No | Only by much fine tuning | Yes Λ→0 |
Late universe near-constant dark energy density, w~−1 | Yes, by definition, w = −1 | Not specific −1 < w < +1 | Yes w = −1.03 ± 0.05 |
Consistent with Planck w0 − wa parameter likelihood region | Yes | Not specific | Yes |
Resolve late vs. early universe ‘H0 and σ8 tensions’ | No | No | Yes, quantitatively |
Resolve ‘Cosmic coincidence problem’ | No | Only by much fine tuning | Yes, naturally |
Account for H0 anisotropies that conflict with ‘cosmic isotropy’ | No | No | Yes, expected |
Experimentally Falsifiable? | No | No | Yes, Predicted H(a) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gough, M.P. Information Dark Energy Can Resolve the Hubble Tension and Is Falsifiable by Experiment. Entropy 2022, 24, 385. https://doi.org/10.3390/e24030385
Gough MP. Information Dark Energy Can Resolve the Hubble Tension and Is Falsifiable by Experiment. Entropy. 2022; 24(3):385. https://doi.org/10.3390/e24030385
Chicago/Turabian StyleGough, Michael Paul. 2022. "Information Dark Energy Can Resolve the Hubble Tension and Is Falsifiable by Experiment" Entropy 24, no. 3: 385. https://doi.org/10.3390/e24030385
APA StyleGough, M. P. (2022). Information Dark Energy Can Resolve the Hubble Tension and Is Falsifiable by Experiment. Entropy, 24(3), 385. https://doi.org/10.3390/e24030385