Thermodynamic State Machine Network
Abstract
:1. Introduction
2. Methods
2.1. Postulates
2.2. Node Interaction Model
2.3. Large-Spatial-Scale, Short-Timescale, Equilibration Algorithm
2.4. State Transition Memory
2.5. Small-Spatial-Scale, Long-Timescale, Adaptation Algorithm
2.6. Inference of Dormant Inputs/Generation of Outputs
2.7. Visualization
3. Results
3.1. Networks without Memory
3.2. Networks with Memory
4. Discussion
4.1. Limitations of the TSMN
4.2. Thermodynamic Computing
4.3. Classical Computing
4.4. Thermodynamicalism
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. TSMN Circuit Model
References
- AI and Compute. Available online: https://openai.com/blog/ai-and-compute/ (accessed on 29 April 2022).
- Hylton, T.; Conte, T.; Still, S.; Williams, R.S. Thermodynamic Computing. In Proceedings of the Computing Community Consortium Workshop, Honolulu, HI, USA, 3–5 January 2019. [Google Scholar]
- Hylton, T.; Conte, T.M.; Hill, M.D. A Vision to Compute like Nature: Thermodynamically. Commun. ACM 2021, 64, 35–38. [Google Scholar] [CrossRef]
- Hylton, T. Thermodynamic Computing: An Intellectual and Technological Frontier. Proceedings 2020, 47, 23. [Google Scholar]
- Schrödinger, E. The Physical Aspect of the Living Cell. In What Is Life; Camridge at the University Press: Camridge, UK, 1944. [Google Scholar]
- Schneider, E.D.; Kay, J.J. Life as a Manifestation of the Second Law of Thermodynamics. Math. Comput. Model. 1994, 19, 25–48. [Google Scholar] [CrossRef]
- Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690–2693. [Google Scholar] [CrossRef] [Green Version]
- Crooks, G.E. Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems. J. Stat. Phys. 1998, 90, 1481–1487. [Google Scholar] [CrossRef]
- Still, S.; Sivak, D.A.; Bell, A.J.; Crooks, G.E. Thermodynamics of Prediction. Phys. Rev. Lett. 2012, 109, 120604. [Google Scholar] [CrossRef] [Green Version]
- Friston, K. Life as We Know It. J. R. Soc. Interface 2013, 10, 20130475. [Google Scholar] [CrossRef] [Green Version]
- England, J.L. Dissipative Adaptation in Driven Self-Assembly. Nat. Nanotechnol. 2015, 10, 919–923. [Google Scholar] [CrossRef]
- Wissner-Gross, A.D.; Freer, C.E. Causal Entropic Forces. Phys. Rev. Lett. 2013, 110, 168702. [Google Scholar] [CrossRef]
- Glauber, R.J. Time-dependent Statistics of the Ising Model. J. Math. Phys. 1963, 4, 294–307. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinton, G.E.; Sejnowski, T.J. Optimal Perceptual Inference. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 19–23 June 1983; Volume 448, pp. 448–453. [Google Scholar]
- Tanaka, G.; Yamane, T.; Héroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent Advances in Physical Reservoir Computing: A Review. Neural Netw. 2019, 115, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Maass, W.; Natschläger, T.; Markram, H. Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H. The “Echo State” Approach to Analysing and Training Recurrent Neural Networks-with an Erratum Note. Ger. Natl. Res. Cent. Inf. Technol. GMD Tech. Rep. 2001, 148, 13. [Google Scholar]
- Scellier, B.; Bengio, Y. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation. Front. Comput. Neurosci. 2017, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Hylton, T. Thermodynamic Neural Network. Entropy 2020, 22, 256. [Google Scholar] [CrossRef] [Green Version]
- Geman, S.; Geman, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 721–741. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Pask, G. Physical Analogues to the Growth of a Concept. In Mechanisation of thought Processes: Proceedings of a Symposium Held at the National Physical Laboratory on 24th, 25th, 26th and 27th November 1958; National Physical Laboratory: Teddington, UK, 1958; Volume 1958, pp. 765–794. [Google Scholar]
- Jun, J.K.; Hübler, A.H. Formation and Structure of Ramified Charge Transportation Networks in an Electromechanical System. Proc. Natl. Acad. Sci. USA 2005, 102, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A. An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics. In Proceedings of the Evolvable Systems: From Biology to Hardware; Higuchi, T., Iwata, M., Liu, W., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 390–405. [Google Scholar]
- Sillin, H.O.; Aguilera, R.; Shieh, H.-H.; Avizienis, A.V.; Aono, M.; Stieg, A.Z.; Gimzewski, J.K. A Theoretical and Experimental Study of Neuromorphic Atomic Switch Networks for Reservoir Computing. Nanotechnology 2013, 24, 384004. [Google Scholar] [CrossRef]
- Diaz-Alvarez, A.; Higuchi, R.; Sanz-Leon, P.; Marcus, I.; Shingaya, Y.; Stieg, A.Z.; Gimzewski, J.K.; Kuncic, Z.; Nakayama, T. Emergent Dynamics of Neuromorphic Nanowire Networks. Sci. Rep. 2019, 9, 14920. [Google Scholar] [CrossRef] [Green Version]
- Hochstetter, J.; Zhu, R.; Loeffler, A.; Diaz-Alvarez, A.; Nakayama, T.; Kuncic, Z. Avalanches and Edge-of-Chaos Learning in Neuromorphic Nanowire Networks. Nat. Commun. 2021, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.K.; Shirai, S.; Mallinson, J.B.; Brown, S.A. Synaptic Dynamics in Complex Self-Assembled Nanoparticle Networks. Faraday Discuss. 2019, 213, 471–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pike, M.D.; Bose, S.K.; Mallinson, J.B.; Acharya, S.K.; Shirai, S.; Galli, E.; Weddell, S.J.; Bones, P.J.; Arnold, M.D.; Brown, S.A. Atomic Scale Dynamics Drive Brain-like Avalanches in Percolating Nanostructured Networks. Nano Lett. 2020, 20, 3935–3942. [Google Scholar] [CrossRef]
- Kuncic, Z.; Marcus, I.; Sanz-Leon, P.; Higuchi, R.; Shingaya, Y.; Li, M.; Stieg, A.; Gimzewski, J.; Aono, M.; Nakayama, T. Emergent Brain-like Complexity from Nanowire Atomic Switch Networks: Towards Neuromorphic Synthetic Intelligence. In Proceedings of the 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), Cork, Ireland, 23–26 July 2018; pp. 1–3. [Google Scholar]
- Zhu, R.; Hochstetter, J.; Loeffler, A.; Diaz-Alvarez, A.; Stieg, A.; Gimzewski, J.; Nakayama, T.; Kuncic, Z. Harnessing Adaptive Dynamics in Neuro-Memristive Nanowire Networks for Transfer Learning. In Proceedings of the 2020 International Conference on Rebooting Computing (ICRC), Atlanta, GA, USA, 1–3 December 2020; pp. 102–106. [Google Scholar]
- Lilak, S.; Woods, W.; Scharnhorst, K.; Dunham, C.; Teuscher, C.; Stieg, A.Z.; Gimzewski, J.K. Spoken Digit Classification by In-Materio Reservoir Computing With Neuromorphic Atomic Switch Networks. Front. Nanotechnol. 2021, 3, 38. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhuo, Y.; et al. Fully Memristive Neural Networks for Pattern Classification with Unsupervised Learning. Nat. Electron. 2018, 1, 137–145. [Google Scholar] [CrossRef]
- Lucas, A. Ising Formulations of Many NP Problems. Front. Phys. 2014, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Takemoto, T.; Hayashi, M.; Yoshimura, C.; Yamaoka, M. 2.6 A 2 × 30 k-Spin Multichip Scalable Annealing Processor Based on a Processing-In-Memory Approach for Solving Large-Scale Combinatorial Optimization Problems. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 52–54. [Google Scholar]
- Su, Y.; Kim, H.; Kim, B. 31.2 CIM-Spin: A 0.5-to-1.2V Scalable Annealing Processor Using Digital Compute-In-Memory Spin Operators and Register-Based Spins for Combinatorial Optimization Problems. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 480–482. [Google Scholar]
- Yamamoto, K.; Ando, K.; Mertig, N.; Takemoto, T.; Yamaoka, M.; Teramoto, H.; Sakai, A.; Takamaeda-Yamazaki, S.; Motomura, M. 7.3 STATICA: A 512-Spin 0.25M-Weight Full-Digital Annealing Processor with a Near-Memory All-Spin-Updates-at-Once Architecture for Combinatorial Optimization with Complete Spin-Spin Interactions. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 138–140. [Google Scholar]
- Wang, T.; Roychowdhury, J. OIM: Oscillator-Based Ising Machines for Solving Combinatorial Optimisation Problems. In Proceedings of the Unconventional Computation and Natural Computation; McQuillan, I., Seki, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 232–256. [Google Scholar]
- Chou, J.; Bramhavar, S.; Ghosh, S.; Herzog, W. Analog Coupled Oscillator Based Weighted Ising Machine. Sci. Rep. 2019, 9, 14786. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Khanna, A.; Gomez, J.; Ni, K.; Toroczkai, Z.; Datta, S. Experimental Demonstration of Phase Transition Nano-Oscillator Based Ising Machine. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 37.8.1–37.8.4. [Google Scholar]
- Cai, F.; Kumar, S.; Van Vaerenbergh, T.; Sheng, X.; Liu, R.; Li, C.; Liu, Z.; Foltin, M.; Yu, S.; Xia, Q.; et al. Power-Efficient Combinatorial Optimization Using Intrinsic Noise in Memristor Hopfield Neural Networks. Nat. Electron. 2020, 3, 409–418. [Google Scholar] [CrossRef]
- Johnson, M.W.; Amin, M.H.S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.; et al. Quantum Annealing with Manufactured Spins. Nature 2011, 473, 194–198. [Google Scholar] [CrossRef]
- Camsari, K.Y.; Faria, R.; Sutton, B.M.; Datta, S. Stochastic P-Bits for Invertible Logic. Phys. Rev. X 2017, 7, 031014. [Google Scholar] [CrossRef] [Green Version]
- Borders, W.A.; Pervaiz, A.Z.; Fukami, S.; Camsari, K.Y.; Ohno, H.; Datta, S. Integer Factorization Using Stochastic Magnetic Tunnel Junctions. Nature 2019, 573, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, A.Z.; Sutton, B.M.; Ghantasala, L.A.; Camsari, K.Y. Weighted P-Bits for FPGA Implementation of Probabilistic Circuits. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1920–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camsari, K.Y.; Salahuddin, S.; Datta, S. Implementing P-Bits With Embedded MTJ. IEEE Electron Device Lett. 2017, 38, 1767–1770. [Google Scholar] [CrossRef]
- Lee, A.; Dai, B.; Wu, D.; Wu, H.; Schwartz, R.N.; Wang, K.L. A Thermodynamic Core Using Voltage-Controlled Spin–Orbit-Torque Magnetic Tunnel Junctions. Nanotechnology 2021, 32, 505405. [Google Scholar] [CrossRef] [PubMed]
- Traversa, F.L.; Di Ventra, M. Polynomial-Time Solution of Prime Factorization and NP-Complete Problems with Digital Memcomputing Machines. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 023107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Ventra, M.; Traversa, F.L. Perspective: Memcomputing: Leveraging Memory and Physics to Compute Efficiently. J. Appl. Phys. 2018, 123, 180901. [Google Scholar] [CrossRef] [Green Version]
- Di Ventra, M.; Traversa, F.L.; Ovchinnikov, I.V. Topological Field Theory and Computing with Instantons. Ann. Phys. 2017, 529, 1700123. [Google Scholar] [CrossRef] [Green Version]
- Turing, A.M. The Chemical Basis of Morphogenesis. Bull. Math. Biol. 1990, 52, 153–197. [Google Scholar] [CrossRef]
- Dueñas-Díez, M.; Pérez-Mercader, J. How Chemistry Computes: Language Recognition by Non-Biochemical Chemical Automata. From Finite Automata to Turing Machines. iScience 2019, 19, 514–526. [Google Scholar] [CrossRef] [Green Version]
- Pearce, S.; Perez-Mercader, J. Chemoadaptive Polymeric Assemblies by Integrated Chemical Feedback in Self-Assembled Synthetic Protocells. ACS Cent. Sci. 2021, 7, 1543–1550. [Google Scholar] [CrossRef]
- Fifield, W. Pablo Picasso: A Composite Interview. Paris Rev. 1964, 32, 37. [Google Scholar]
Natural Equilibration | Transport Driven Self Organization | Input Functionalization | Scale Integration | Active Dynamics | |
---|---|---|---|---|---|
Ferrous sulphate electrochemistry (e.g., Pask 1958) | Yes | Yes | Yes | Yes | No |
Steel bearing electromigration (e.g., Jun 2015) | Yes | Yes | Yes | Yes | No |
FPGA evolution (e.g., Thompson 1996) | No | Maybe | Yes | Yes | Yes |
Atomic Switch Networks (e.g., Sillin 2013) | Yes | Yes | Yes | Yes | No |
Ising Machines (see text) | Yes, in some cases | No | No | No | Yes |
Memcomputing Machines (e.g., Traversa 2017) | Yes, in principle | Maybe | No | Yes | Yes |
Chemical Protocells (e.g., Pearce 2021) | Yes | Partially | Yes | Yes | Yes |
Machine Learning (e.g., TSMN model) | No | Yes | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hylton, T. Thermodynamic State Machine Network. Entropy 2022, 24, 744. https://doi.org/10.3390/e24060744
Hylton T. Thermodynamic State Machine Network. Entropy. 2022; 24(6):744. https://doi.org/10.3390/e24060744
Chicago/Turabian StyleHylton, Todd. 2022. "Thermodynamic State Machine Network" Entropy 24, no. 6: 744. https://doi.org/10.3390/e24060744
APA StyleHylton, T. (2022). Thermodynamic State Machine Network. Entropy, 24(6), 744. https://doi.org/10.3390/e24060744