A Complex-Valued Self-Supervised Learning-Based Method for Specific Emitter Identification
Abstract
:1. Introduction
- We apply the self-supervised learning framework to SEI, which solves the problem of low recognition accuracy with small samples. Self-supervised learning includes two tasks: pretext task and downstream task. In the pretext task, we can directly use unlabeled samples for contrastive learning, which increases the utilization of unlabeled samples. Our proposed method can achieve 84% recognition accuracy in the downstream task, even if the number of labeled samples of each type of emitter is 25.
- We first combine the complex-valued neural network with self-supervised learning. Using the stage of pretext task to pre-train the complex-valued encoder to obtain the initial value of the weight solves the problem that the complex-valued network is sensitive to the weight initialization. In addition, the high anti-noise performance of complex-valued networks is used to improve the robustness of the self-supervised learning method to noise.
- The data augmentation methods used in self-supervised learning are mainly related to images, but are not suitable for signals. Therefore, we propose three new data augmentation methods based on communication signals: phase rotation, random cropping, and jitter.
2. System Model
2.1. Signal Acquisition
2.2. Data Pre-Processing
2.3. Feature Extraction and Classification
3. Related Work
3.1. Pretext Task
3.2. Loss Function
3.3. Complex-Valued Neural Network
4. Methodology
4.1. Pretext Task
4.2. Data Augmentation
4.3. Build a Queue
4.4. Momentum Update
4.5. Loss Function
4.6. Downstream Task
5. Experiments
5.1. Data Set and Parameter Setting
5.2. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, Y.; Zhu, S.; Gan, L. Specific emitter identification based on the natural measure. Entropy 2017, 19, 117. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.; Prokopiw, W.; Chan, Y. Modulation identification of digital signals by the wavelet transform. IEE Proc.-Radar Sonar Navig. 2000, 147, 169–176. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, D.; Guo, Y. A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. arXiv 2018, arXiv:1804.05062. [Google Scholar] [CrossRef] [Green Version]
- Revillon, G.; Mohammad-Djafari, A.; Enderli, C. Radar emitters classification and clustering with a scale mixture of normal distributions. IET Radar Sonar Navig. 2019, 13, 128–138. [Google Scholar] [CrossRef]
- Ongie, G.; Jalal, A.; Metzler, C.A.; Baraniuk, R.G.; Dimakis, A.G.; Willett, R. Deep learning techniques for inverse problems in imaging. IEEE J. Sel. Areas Inf. Theory 2020, 1, 39–56. [Google Scholar] [CrossRef]
- Metzler, C.A.; Maleki, A.; Baraniuk, R.G. From denoising to compressed sensing. IEEE Trans. Inf. Theory 2016, 62, 5117–5144. [Google Scholar] [CrossRef]
- El Mahdaoui, A.; Ouahabi, A.; Moulay, M.S. Image Denoising Using a Compressive Sensing Approach Based on Regularization Constraints. Sensors 2022, 22, 2199. [Google Scholar] [CrossRef]
- Haneche, H.; Ouahabi, A.; Boudraa, B. New mobile communication system design for Rayleigh environments based on compressed sensing-source coding. IET Commun. 2019, 13, 2375–2385. [Google Scholar] [CrossRef]
- Trabelsi, C.; Bilaniuk, O.; Zhang, Y.; Serdyuk, D.; Subramanian, S.; Santos, J.F.; Mehri, S.; Rostamzadeh, N.; Bengio, Y.; Pal, C.J. Deep Complex Networks. arXiv 2017, arXiv:1705.09792. [Google Scholar]
- Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I. Detection and Classification of UAVs Using RF Fingerprints in the Presence of Interference. arXiv 2019, arXiv:1909.05429. [Google Scholar]
- Ali, A.M.; Uzundurukan, E.; Kara, A. Improvements on transient signal detection for RF fingerprinting. In Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 15–18 May 2017; pp. 1–4. [Google Scholar]
- Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I. Micro-UAV detection and classification from RF fingerprints using machine learning techniques. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–13. [Google Scholar]
- Serinken, N.; Ureten, O. Generalised dimension characterisation of radio transmitter turn-on transients. Electron. Lett. 2000, 36, 1064–1066. [Google Scholar] [CrossRef]
- Choe, H.C.; Poole, C.E.; Andrea, M.Y.; Szu, H.H. Novel identification of intercepted signals from unknown radio transmitters. In Wavelet Applications II; SPIE: Bellingham, WA, USA, 1995; Volume 2491, pp. 504–517. [Google Scholar]
- Klein, R.; Temple, M.A.; Mendenhall, M.J.; Reising, D.R. Sensitivity analysis of burst detection and RF fingerprinting classification performance. In Proceedings of the 2009 IEEE International Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–5. [Google Scholar]
- Zhang, X.D.; Shi, Y.; Bao, Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Signal Process. 2001, 49, 1875–1885. [Google Scholar] [CrossRef]
- Aubry, A.; Bazzoni, A.; Carotenuto, V.; De Maio, A.; Failla, P. Cumulants-based radar specific emitter identification. In Proceedings of the 2011 IEEE International Workshop on Information Forensics and Security, Iguacu Falls, Brazil, 29 November–2 December 2011; pp. 1–6. [Google Scholar]
- Bertoncini, C.; Rudd, K.; Nousain, B.; Hinders, M. Wavelet fingerprinting of radio-frequency identification (RFID) tags. IEEE Trans. Ind. Electron. 2011, 59, 4843–4850. [Google Scholar] [CrossRef]
- López-Risueño, G.; Grajal, J.; Sanz-Osorio, A. Digital channelized receiver based on time-frequency analysis for signal interception. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 879–898. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.; Dobre, O.A.; Zhong, Z. Specific emitter identification via Hilbert–Huang transform in single-hop and relaying scenarios. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1192–1205. [Google Scholar] [CrossRef]
- Lundén, J.; Koivunen, V. Automatic radar waveform recognition. IEEE J. Sel. Top. Signal Process. 2007, 1, 124–136. [Google Scholar] [CrossRef]
- Qian, Y.; Qi, J.; Kuai, X.; Han, G.; Sun, H.; Hong, S. Specific emitter identification based on multi-level sparse representation in automatic identification system. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2872–2884. [Google Scholar] [CrossRef]
- Panagakis, Y.; Kossaifi, J.; Chrysos, G.G.; Oldfield, J.; Nicolaou, M.A.; Anandkumar, A.; Zafeiriou, S. Tensor methods in computer vision and deep learning. Proc. IEEE 2021, 109, 863–890. [Google Scholar] [CrossRef]
- Yin, W.; Yang, W.; Liu, H. A neural network scheme for recovering scattering obstacles with limited phaseless far-field data. J. Comput. Phys. 2020, 417, 109594. [Google Scholar] [CrossRef]
- Lauriola, I.; Lavelli, A.; Aiolli, F. An introduction to deep learning in natural language processing: Models, techniques, and tools. Neurocomputing 2022, 470, 443–456. [Google Scholar] [CrossRef]
- You, W.; Zhang, H.; Zhao, X. A Siamese CNN for image steganalysis. IEEE Trans. Inf. Forensics Secur. 2020, 16, 291–306. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhai, W.; Liu, H.; Geng, J.; Zhou, M.; Ji, C.; Jia, G. Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks. IEEE Trans. Ind. Inform. 2021, 18, 4224–4233. [Google Scholar] [CrossRef]
- Gong, J.; Xu, X.; Lei, Y. Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2898–2913. [Google Scholar] [CrossRef]
- He, B.; Wang, F. Cooperative specific emitter identification via multiple distorted receivers. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3791–3806. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional radio modulation recognition networks. In Proceedings of the International Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2–5 September 2016; pp. 213–226. [Google Scholar]
- Leng, P.; Xu, C. Specific emitter identification based on deep reinforcement learning. Acta Armamentarii 2018, 39, 2420–2426. [Google Scholar]
- Liu, Y.; Xu, H.; Qi, Z.; Shi, Y. Specific Emitter Identification Against Unreliable Features Interference Based on Time-Series Classification Network Structure. IEEE Access 2020, 8, 200194–200208. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Li, F. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1725–1732. [Google Scholar]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf (accessed on 16 June 2022).
- He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 1 June 2020; pp. 9729–9738. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trischler, A.; Bengio, Y. Learning deep representations by mutual information estimation and maximization. arXiv 2018, arXiv:1808.06670. [Google Scholar]
- Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; pp. 1735–1742. [Google Scholar]
- Wu, Z.; Xiong, Y.; Yu, S.X.; Lin, D. Unsupervised feature learning via non-parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3733–3742. [Google Scholar]
- Van den Oord, A.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748. [Google Scholar]
- Zhuang, C.; Zhai, A.L.; Yamins, D. Local aggregation for unsupervised learning of visual embeddings. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6002–6012. [Google Scholar]
- Wang, Y.; Gui, G.; Gacanin, H.; Ohtsuki, T.; Dobre, O.A.; Poor, H.V. An efficient specific emitter identification method based on complex-valued neural networks and network compression. IEEE J. Sel. Areas Commun. 2021, 39, 2305–2317. [Google Scholar] [CrossRef]
- Mönning, N.; Manandhar, S. Evaluation of complex-valued neural networks on real-valued classification tasks. arXiv 2018, arXiv:1811.12351. [Google Scholar]
- Masters, D.; Luschi, C. Revisiting small batch training for deep neural networks. arXiv 2018, arXiv:1804.07612. [Google Scholar]
Number | 10 | 15 | 20 | 25 | 200 | 400 | |
---|---|---|---|---|---|---|---|
Acc (%) | |||||||
CSSL | 70.09 (±3.8) | 75.13(±2.0) | 77.56 (±2.6) | 84.56 (±2.1) | 93.87 (±1.5) | 98.34 (±1.0) | |
CVNN | 55.80 (±13.8) | 63.20 (±10.8) | 58.74 (±9.3) | 66.68 (±5.4) | 86.34 (±3.9) | 92.12 (±2.4) | |
RSSL | 68.13 | 72.00 | 75.21 | 79.62 | 90.91 | 93.06 | |
RDAN | 55.09 | 60.62 | 67.09 | 76.84 | 89.84 | 91.00 | |
RRN | 23.65 | 25.18 | 26.28 | 27.50 | 48.18 | 65.65 |
Number | 10 | 15 | 20 | 25 | 200 | 400 | |
---|---|---|---|---|---|---|---|
Acc (%) | |||||||
CSSL | 61.78 | 66.03 | 68.75 | 70.65 | 84.84 | 93.88 | |
CVNN | 50.56 | 51.57 | 52.24 | 56.50 | 79.25 | 83.18 | |
RDAN | 50.34 | 50.47 | 51.25 | 51.53 | 76.34 | 81.37 | |
RRN | 19.18 | 19.37 | 23.43 | 25.93 | 37.56 | 40.90 |
SNR | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|
Acc (%) | ||||||
CSSL | 85.28 | 86.28 | 89.25 | 92.06 | 90.31 | |
CVNN | 83.15 | 83.49 | 84.72 | 85.18 | 85.78 | |
RDAN | 81.37 | 82.43 | 83.71 | 83.84 | 86.34 | |
RRN | 16.43 | 24.62 | 30.65 | 32.22 | 34.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Yang, J.; Liu, H.; Huang, K. A Complex-Valued Self-Supervised Learning-Based Method for Specific Emitter Identification. Entropy 2022, 24, 851. https://doi.org/10.3390/e24070851
Zhao D, Yang J, Liu H, Huang K. A Complex-Valued Self-Supervised Learning-Based Method for Specific Emitter Identification. Entropy. 2022; 24(7):851. https://doi.org/10.3390/e24070851
Chicago/Turabian StyleZhao, Dongxing, Junan Yang, Hui Liu, and Keju Huang. 2022. "A Complex-Valued Self-Supervised Learning-Based Method for Specific Emitter Identification" Entropy 24, no. 7: 851. https://doi.org/10.3390/e24070851
APA StyleZhao, D., Yang, J., Liu, H., & Huang, K. (2022). A Complex-Valued Self-Supervised Learning-Based Method for Specific Emitter Identification. Entropy, 24(7), 851. https://doi.org/10.3390/e24070851