Bendlet Transform Based Adaptive Denoising Method for Microsection Images
Abstract
:1. Introduction
2. Preliminary Description and Methodological Framework
2.1. Framework of the Adaptive Noise Reduction Method Model
2.2. Preliminary Remarks on Bendlets
3. Bendlet Transform for Image Denoising
3.1. Adaptive and Multi-Threshold Image Denoising Algorithm
3.2. Bendlet Algorithm and Other Denoising Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramm, A.G.; Katsevich, A.I. The Radon Transform and Local Tomography; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Sun, T.; Wang, X.; Zhang, K.; Jiang, D.; Lin, D.; Jv, X.; Ding, B.; Zhu, W. Medical Image Authentication Method Based on the Wavelet Packet and Energy Entropy. Entropy 2022, 24, 798. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Lei, Y.; Wang, T.; Higgins, K.; Bradley, J.D.; Curran, W.J.; Liu, T.; Yang, X. LungRegNet: An unsupervised deformable image registration method for 4D-CT lung. Med. Phys. 2020, 47, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Pan, H.; Zhang, K.; Chen, C.; Liu, P.; Shi, K. NeDSeM: Neutrosophy Domain-Based Segmentation Method for Malignant Melanoma Images. Entropy 2022, 24, 783. [Google Scholar] [CrossRef]
- Erasmus, L.J.; Hurter, D.; Naudé, M.; Kritzinger, H.G.; Acho, S. A short overview of MRI artefacts. SA J. Radiol. 2004, 8, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 2018, 42, 226. [Google Scholar] [CrossRef] [Green Version]
- Rasool, M.; Ismail, N.A.; Boulila, W.; Ammar, A.; Samma, H.; Yafooz, W.M.S.; Emara, A.-H.M. A Hybrid Deep Learning Model for Brain Tumour Classification. Entropy 2022, 24, 799. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Baek, J.; You, S.K.; Choi, J.K.; Seo, J.K. Unpaired image denoising using a generative adversarial network in X-ray CT. IEEE Access 2019, 7, 110414–110425. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, H.; Li, S.; Bai, Z.; Zhang, J. Two stage residual CNN for texture denoising and structure enhancement on low dose CT image. Comput. Methods Programs Biomed. 2020, 184, 105115. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, H.L.; Niu, Y.; Lv, J.; Chen, J.; Cheng, Y. CNN and multi-feature extraction based denoising of CT images. Biomed. Signal Processing Control. 2021, 67, 102545. [Google Scholar] [CrossRef]
- Sreekala, K.; Kumar, H.C.S.; Raja, K.B. Low light image denoising solution with contrast enhancement in curvelet domain using Gaussian mixture adaptation model. Int. J. Wavelets Multiresolut. Inf. Process. 2021, 19, 2050054. [Google Scholar] [CrossRef]
- Pathak, Y.; Arya, K.V.; Tiwari, S. Fourth-order partial differential equations based anisotropic diffusion model for low-dose CT images. Mod. Phys. Lett. B 2018, 32, 1850300. [Google Scholar] [CrossRef]
- Xu, S.; Liu, T.; Luo, J.; Zhang, G.; Tang, Y. An Image Quality-Aware Fast Blind Denoising Algorithm for Mixed Noise. J. Comput. Res. Dev. 2019, 56, 2458–2468. [Google Scholar] [CrossRef]
- Li, L.; Zhu, L.P.; Mei, S.L. Shannon-Cosine Wavelet Precise Integration Denoising Method for Locust Slice Image. Trans. Chin. Soc. Agric. Mach. 2020, 51, 186–192. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, W.; Sun, C.; Sowmya, A. Corner Detection Based on Shearlet Transform and Multi-directional Structure Tensor. Pattern Recognit. 2020, 103, 107299. [Google Scholar] [CrossRef]
- Lessig, C.; Petersen, P.; Schäfer, M. Bendlets: A second-order shearlet transform with bent elements. Appl. Comput. Harmon. Anal. 2019, 46, 384–399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Sun, C. Corner Detection Using Multi-directional Structure Tensor with Multiple Scales. Int. J. Comput. Vis. 2020, 128, 438–459. [Google Scholar] [CrossRef]
- Baraha, S.; Sahoo, A.K. Restoration of speckle noise corrupted SAR images using regularization by denoising. J. Vis. Commun. Image Represent. 2022, 86, 103546. [Google Scholar] [CrossRef]
- Ichikawa, K.; Kawashima, H.; Shimada, M.; Adachi, T.; Takatac, T. A three-dimensional cross-directional bilateral filter for edge-preserving noise reduction of low-dose computed tomography images. Comput. Biol. Med. 2019, 111, 103353. [Google Scholar] [CrossRef]
- Marconato Stringhini, R.; Welfer, D.; Tello Gamarra, D.F.; Nogara Dotto, G. Noise Reduction with Detail Preservation in Low-Dose Dental CT Images by Morphological Operators and BM3D. In Proceedings of the International Conference on Intelligent Systems Design and Applications, Auburn, WA, USA, 3–5 December 2019; Springer: Cham, Switzerland, 2019; pp. 309–317. [Google Scholar] [CrossRef]
- Bai, J.; Feng, X.C. An Integro-different Equation Approach to Reconstructing Images Corrupted by poisson Noise. J. Electron. Inf. Technol. 2013, 35, 451–456. [Google Scholar] [CrossRef]
- Chen, W.; Wang, F.; Zhang, J.; Li, C.; Hong, L. LINC01087 indicates a poor prognosis of glioma patients with preoperative MRI. Funct. Integr. Genom. 2022, 22, 55–64. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Shangguan, H.; Han, Z.; Han, X.; Wang, A.; Cui, X. A Low-Dose CT Image Denoising Method Based on Generative Adversarial Network and Noise Level Estimation. J. Electron. Inf. Technol. 2021, 43, 2404–2413. [Google Scholar]
- Zha, Z.; Wen, B.; Yuan, X.; Zhou, J.; Zhu, C.; Kot, A.C. Low-rankness guided group sparse representation for image restoration. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
Filtering Algorithm | SSIM | PSNR | SNR | MSE | AVE | VIF | TIME |
---|---|---|---|---|---|---|---|
Bendlets | 0.9998 | 44.8570 | 34.9154 | 2.1251 | 47.9395 | 0.7655 | 8.281 |
0.9998 | 39.4094 | 29.7139 | 7.4497 | 49.4498 | 0.5962 | 8.968 | |
0.9997 | 45.3965 | 34.5704 | 6.5352 | 44.6905 | 0.5802 | 8.615 | |
0.9988 | 46.7255 | 36.1813 | 5.2032 | 40.914 | 0.6999 | 8.096 | |
0.9997 | 44.2511 | 34.4531 | 8.8191 | 51.932 | 0.7475 | 8.918 | |
Shearlets | 0.9981 | 36.4608 | 26.5192 | 14.6894 | 46.9211 | 0.4348 | 8.852 |
0.9990 | 38.5649 | 28.8694 | 9.0487 | 48.9580 | 0.5199 | 7.875 | |
0.9987 | 38.786 | 27.960 | 8.5997 | 44.3568 | 0.4583 | 7.342 | |
0.9990 | 39.5702 | 29.0260 | 7.1789 | 40.2439 | 0.4647 | 8.521 | |
0.9987 | 37.8569 | 28.0589 | 10.651 | 51.7194 | 0.4723 | 8.334 | |
BM3D | 0.9995 | 39.6745 | 32.733 | 7.8692 | 48.0949 | 0.7414 | 31.955 |
0.9995 | 38.5649 | 28.8694 | 9.0487 | 48.958 | 0.5199 | 34.357 | |
0.9993 | 39.9782 | 29.1522 | 6.8769 | 44.686 | 0.5502 | 44.051 | |
0.9996 | 40.9681 | 30.4238 | 4.3821 | 40.9864 | 0.6302 | 36.264 | |
0.9993 | 38.6766 | 28.8786 | 7.4433 | 52.0019 | 0.5047 | 33.384 | |
Bilateral | 0.9983 | 35.8376 | 25.8961 | 16.9559 | 47.8985 | 0.5273 | 0.377 |
0.9984 | 39.3879 | 29.6924 | 7.4867 | 49.5787 | 0.616 | 0.376 | |
0.9983 | 39.3889 | 28.5629 | 7.485 | 44.6782 | 0.5003 | 0.368 | |
0.9987 | 42.0895 | 31.5453 | 4.0191 | 40.9828 | 0.6139 | 0.367 | |
0.9982 | 38.8100 | 29.0120 | 8.5522 | 51.9804 | 0.5931 | 0.372 | |
Wiener | 0.9980 | 35.7438 | 25.8023 | 17.326 | 47.9710 | 0.6026 | 0.260 |
0.9980 | 35.4473 | 25.7518 | 18.5501 | 49.5007 | 0.6028 | 0.429 | |
0.9974 | 35.6611 | 24.8350 | 17.6593 | 44.7101 | 0.6258 | 0.303 | |
0.9977 | 35.4446 | 24.9003 | 18.5619 | 40.9344 | 0.5786 | 0.330 | |
0.9976 | 35.2431 | 25.4451 | 19.4434 | 51.9718 | 0.6268 | 0.287 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, S.; Liu, M.; Kudreyko, A.; Cattani, P.; Baikov, D.; Villecco, F. Bendlet Transform Based Adaptive Denoising Method for Microsection Images. Entropy 2022, 24, 869. https://doi.org/10.3390/e24070869
Mei S, Liu M, Kudreyko A, Cattani P, Baikov D, Villecco F. Bendlet Transform Based Adaptive Denoising Method for Microsection Images. Entropy. 2022; 24(7):869. https://doi.org/10.3390/e24070869
Chicago/Turabian StyleMei, Shuli, Meng Liu, Aleksey Kudreyko, Piercarlo Cattani, Denis Baikov, and Francesco Villecco. 2022. "Bendlet Transform Based Adaptive Denoising Method for Microsection Images" Entropy 24, no. 7: 869. https://doi.org/10.3390/e24070869
APA StyleMei, S., Liu, M., Kudreyko, A., Cattani, P., Baikov, D., & Villecco, F. (2022). Bendlet Transform Based Adaptive Denoising Method for Microsection Images. Entropy, 24(7), 869. https://doi.org/10.3390/e24070869