Extending Kolmogorov’s Axioms for a Generalized Probability Theory on Collections of Contexts
Abstract
:1. Kolmogorov-Type Conditional Probabilities among Distinct Contexts
- (i)
- largest or maximal in the sense that any extension yields redundancies,
- (ii)
- yet at the same time in the finest resolution in the sense that the respective observables or properties are “no composite” of “more elementary” ones,
- (iii)
- contains only mutually exclusive observables in the sense that one property or observation excludes another, different property or observation, while at the same time
- (iv)
- includes only simultaneously measurable, compatible observables or properties.
2. Generalization of Kolmogorov’s Axioms to Arbitrary Event Structures
3. Cauchy’s Functional Equation Encoding Additivity
4. Examples of Application of the Generalized Kolmogorov Axioms
4.1. Quantum Bistochasticity for Pure States
4.2. Quasi-Classical Partition Logics
4.2.1. Two Non-Intertwining Two-Atomic Contexts
4.2.2. Two Intertwining Three-Atomic Contexts
- (i)
- (first type of experiment) or (second type of experiment): the light of the firefly is in the left half of the window;
- (ii)
- (first type of experiment) or (second type of experiment): the light of the firefly is in the right half of the window;
- (iii)
- (first type of experiment) and (second type of experiment): the firefly does not shine (does not emit light).
4.2.3. Different Intrinsically Operational State Preparation
4.2.4. Pentagon/Pentagram/House Logic with Five Cyclically Intertwining Three-Atomic Contexts
5. Greechie and Wright’S Twelfth Dispersionless State on the Pentagon/Pentagram/House Logic
6. Three-Colorable Dense Points on the Sphere
7. Extrema of Conditional Probabilities in Row and Doubly Stochastic Matrices
8. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schrödinger, E. My View of the World; Cambridge University Press: Cambridge, UK, 1951. [Google Scholar] [CrossRef]
- Aerts, D. Example of a macroscopic classical situation that violates Bell inequalities. Lett. Nuovo C. 1982, 34, 107–111. [Google Scholar] [CrossRef]
- Aerts, D. A possible explanation for the probabilities of quantum mechanics. J. Math. Phys. 1986, 27, 202–210. [Google Scholar] [CrossRef]
- Khrennikov, A.Y. Ubiquitous Quantum Structure; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Cervantes, V.H.; Kujala, J.V. Contextuality in canonical systems of random variables. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2017, 375, 20160389. [Google Scholar] [CrossRef] [PubMed]
- Gleason, A.M. Measures on the closed subspaces of a Hilbert space. J. Math. Mech. (Now Indiana Univ. Math. J.) 1957, 6, 885–893. [Google Scholar] [CrossRef]
- Specker, E. Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica 1960, 14, 239–246, English translation at https://arxiv.org/abs/1103.4537. [Google Scholar] [CrossRef]
- Svozil, K. Classical Predictions for Intertwined Quantum Observables Are Contingent and Thus Inconclusive. Quantum Rep. 2020, 2, 278–292. [Google Scholar] [CrossRef]
- Kochen, S.; Specker, E.P. The Problem of Hidden Variables in Quantum Mechanics. J. Math. Mech. (Now Indiana Univ. Math. J.) 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Abbott, A.A.; Calude, C.S.; Svozil, K. A variant of the Kochen-Specker theorem localising value indefiniteness. J. Math. Phys. 2015, 56, 102201. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. What Is so Special about Quantum Clicks? Entropy 2020, 22, 602. [Google Scholar] [CrossRef]
- Uffink, J. Subjective Probability and Statistical Physics. In Probabilities in Physics; Beisbart, C., Hartmann, S., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 25–49. [Google Scholar] [CrossRef]
- Aczél, J. Lectures on functional equations and their applications. In Mathematics in Science and Engineering; Academic Press: New York, NY, USA; London, UK, 1966; Volume 19, p. xx+510. [Google Scholar]
- Reem, D. Remarks on the Cauchy functional equation and variations of it. Aequationes Math. 2017, 91, 237–264. [Google Scholar] [CrossRef]
- Busch, P. Quantum states and generalized observables: A simple proof of Gleason’s theorem. Phys. Rev. Lett. 2003, 91, 120403. [Google Scholar] [CrossRef]
- Caves, C.M.; Fuchs, C.A.; Manne, K.K.; Renes, J.M. Gleason-type derivations of the quantum probability rule for generalized measurements. Found. Physics. Int. J. Devoted Concept. Bases Fundam. Theor. Mod. Phys. 2004, 34, 193–209. [Google Scholar] [CrossRef]
- Granström, H. Gleason’s Theorem. Master’s Thesis, Stockholm University, Stockholm, Sweden, 2006. [Google Scholar]
- Wright, V.J. Gleason-Type Theorems and General Probabilistic Theories. Ph.D. Thesis, University of York, Heslington, UK, 2019. [Google Scholar]
- Wright, V.J.; Weigert, S. A Gleason-type theorem for qubits based on mixtures of projective measurements. J. Phys. Math. Theor. 2019, 52, 055301. [Google Scholar] [CrossRef]
- Wright, V.J.; Weigert, S. Gleason-Type Theorems from Cauchy’s Functional Equation. Found. Phys. 2019, 49, 594–606. [Google Scholar] [CrossRef]
- Aufféves, A.; Grangier, P. Recovering the quantum formalism from physically realist axioms. Sci. Rep. 2017, 7, 43365. [Google Scholar] [CrossRef]
- Aufféves, A.; Grangier, P. Extracontextuality and extravalence in quantum mechanics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170311. [Google Scholar] [CrossRef]
- Halmos, P.R. Finite-Dimensional Vector Spaces; Undergraduate Texts in Mathematic; Springer: New York, NY, USA, 1958. [Google Scholar] [CrossRef] [Green Version]
- von Neumann, J. Mathematische Grundlagen der Quantenmechanik, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996; English translation published by Princeton University Press. [Google Scholar] [CrossRef]
- Birkhoff, G.; von Neumann, J. The Logic of Quantum Mechanics. Ann. Math. 1936, 37, 823–843. [Google Scholar] [CrossRef]
- Marcus, M. Some Properties and Applications of Doubly Stochastic Matrices. Am. Math. Mon. 1960, 67, 215–221. [Google Scholar] [CrossRef]
- Svozil, K. Logical equivalence between generalized urn models and finite automata. Int. J. Theor. Phys. 2005, 44, 745–754. [Google Scholar] [CrossRef]
- Moore, E.F. Gedanken-Experiments on Sequential Machines. In Automata Studies. (AM-34); Shannon, C.E., McCarthy, J., Eds.; Princeton University Press: Princeton, NJ, USA, 1956; pp. 129–153. [Google Scholar] [CrossRef]
- Wright, R. The state of the pentagon. A nonclassical example. In Mathematical Foundations of Quantum Theory; Marlow, A.R., Ed.; Academic Press: New York, NY, USA, 1978; pp. 255–274. [Google Scholar] [CrossRef]
- Wright, R. Generalized urn models. Found. Phys. 1990, 20, 881–903. [Google Scholar] [CrossRef]
- Svozil, K. Faithful orthogonal representations of graphs from partition logics. Soft Comput. 2020, 24, 10239–10245. [Google Scholar] [CrossRef]
- Greechie, R.J. Orthomodular lattices admitting no states. J. Comb. Theory. Ser. A 1971, 10, 119–132. [Google Scholar] [CrossRef]
- Kalmbach, G. Orthomodular Lattices. In London Mathematical Society Monographs; Academic Press: London, UK; New York, NY, USA, 1983; Volume 18. [Google Scholar]
- Navara, M.; Rogalewicz, V. The pasting constructions for orthomodular posets. Math. Nachrichten 1991, 154, 157–168. [Google Scholar] [CrossRef]
- Tkadlec, J.; (Czech Technical University in Prague). Private communication. electronic message from 23 August 2017.
- Neugebauer, O. Vorlesungen über die Geschichte der antiken mathematischen Wissenschaften. 1. Band: Vorgriechische Mathematik; Springer: Berlin/Heidelberg, Germany, 1934. [Google Scholar] [CrossRef]
- Lovász, L. On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 1979, 25, 1–7. [Google Scholar] [CrossRef]
- Cohen, D.W. An Introduction to Hilbert Space and Quantum Logic; Problem Books in Mathematics; Springer: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Svozil, K. Generalized event structures and probabilities. In Information and Complexity; Burgin, M., Calude, C.S., Eds.; World Scientific Series in Information Studies: Volume 6, Chapter 11; World Scientific: Singapore, 2016; pp. 276–300. [Google Scholar] [CrossRef]
- Svozil, K. Contexts in quantum, classical and partition logic. In Handbook of Quantum Logic and Quantum Structures; Engesser, K., Gabbay, D.M., Lehmann, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 551–586. [Google Scholar] [CrossRef]
- Aufféves, A.; Grangier, P. Stochastic, bistochastic, and unistochastic matrices for quantum probabilities. 2015; Unpublished draft. [Google Scholar]
- Gerelle, E.R.; Greechie, R.J.; Miller, F.R. Weights on Spaces. In Physical Reality and Mathematical Description; Enz, C.P., Mehra, J., Eds.; D. Reidel Publishing Company, Springer: Dordrecht, The Netherlands, 1974; pp. 167–192. [Google Scholar] [CrossRef]
- Godsil, C.D.; Zaks, J. Colouring the sphere, University of Waterloo research report CORR 88-12 and. arXiv 2012, arXiv:1201.0486. [Google Scholar]
- Meyer, D.A. Finite precision measurement nullifies the Kochen-Specker theorem. Phys. Rev. Lett. 1999, 83, 3751–3754. [Google Scholar] [CrossRef]
- Havlicek, H.; Krenn, G.; Summhammer, J.; Svozil, K. Colouring the rational quantum sphere and the Kochen-Specker theorem. J. Phys. Math. Gen. 2001, 34, 3071–3077. [Google Scholar] [CrossRef]
- Berman, A.; Plemmons, R.J. Nonnegative Matrices in the Mathematical Sciences; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1994. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svozil, K. Extending Kolmogorov’s Axioms for a Generalized Probability Theory on Collections of Contexts. Entropy 2022, 24, 1285. https://doi.org/10.3390/e24091285
Svozil K. Extending Kolmogorov’s Axioms for a Generalized Probability Theory on Collections of Contexts. Entropy. 2022; 24(9):1285. https://doi.org/10.3390/e24091285
Chicago/Turabian StyleSvozil, Karl. 2022. "Extending Kolmogorov’s Axioms for a Generalized Probability Theory on Collections of Contexts" Entropy 24, no. 9: 1285. https://doi.org/10.3390/e24091285
APA StyleSvozil, K. (2022). Extending Kolmogorov’s Axioms for a Generalized Probability Theory on Collections of Contexts. Entropy, 24(9), 1285. https://doi.org/10.3390/e24091285