Information-Theoretic Models for Physical Observables
Abstract
:1. Introduction
2. Mathematical Framework
2.1. Single Source, the Fisher Information, and the Riemannian Manifold
2.2. Stationary States in the Riemannian Manifold
2.3. Solutions of the Quantum Harmonic Oscillator in the Riemannian Manifold
2.4. Probability Density Function, Estimator’s Variance, and Cramér–Rao Lower Bound
2.5. m Independent Sources and Global Probability Density Function
2.6. Bayesian Framework and Posterior Probability Density Function
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, A. The Philosophy of Niels Bohr. Bull. At. Sci. 1963, 19, 8–14. [Google Scholar] [CrossRef]
- Heisenberg, W. The Representation of Nature in Contemporary Physics. Daedalus 1958, 87, 95–108. [Google Scholar]
- Wheeler, J. Information, Physics, Quantum: The search for links. In Proceedings of the III International Symposium on Foundations of Quantum Mechanics, Tokyo, Japan, 28–31 August 1989; pp. 354–358. [Google Scholar]
- Ansede, M. Nobel winner Anton Zeilinger: Physicists Can Make Measurements, but Cannot Say Anything about the Essence of Reality. El Pais. 2023. Available online: https://english.elpais.com/science-tech/2023-06-14/nobel-winner-anton-zeilinger-physicists-can-make-measurements-but-cannot-say-anything-about-the-essence-of-reality.html (accessed on 1 July 2023).
- Rao, C. Information and Accuracy Attainable in Estimation of Statistical Parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Burbea, J.; Rao, C.R. Entropy differential metric, distance and divergence measures in probability spaces: A unified approach. J. Multivar. Anal. 1982, 12, 575–596. [Google Scholar] [CrossRef]
- Moivre, A.D. Approximatio Ad Summam Terminorum Binomii (a+b)n in Seriem Expansi, 1733; pp. 1–7. Self-Published Pamphlet.
- Fisher, R. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. London. Ser. Contain. Pap. Math. Phys. Character 1922, 222, 309–368. [Google Scholar]
- Riemann, B. Über die Hypothesen, Welche der Geometrie zu Grunde liegen. (Mitgetheilt durch R. Dedekind). 1868. Available online: https://eudml.org/doc/135760 (accessed on 15 July 2023).
- Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28, 1049–1070. [Google Scholar] [CrossRef]
- Frieden, B.R. Fisher information as the basis for the Schrödinger wave equation. Am. J. Phys. 1989, 57, 1004–1008. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. der Phys. 1926, 79, 489–527. [Google Scholar] [CrossRef]
- Laplace, P. Mémoire sur les Intégrales Définies et leur Application aux Probabilités, et Spécialement a la Recherche du Milieu Qu’il Faut Choisir Entre les Resultats des Observations. In Mémoires de la Classe des Sciences Mathématiques et Physiques de L’institut Impérial de France; L’institut Impérial de France: Paris, France, 1811; pp. 297–347. [Google Scholar]
- Hermite, C. Sur un Nouveau Développement en Série de Fonctions; Académie des Sciences and Centre National de la Recherche Scientifique de France: Paris, France, 1864. [Google Scholar]
- Cramér, H. Mathematical Methods of Statistics; Goldstine Printed Materials; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Facchi, P.; Kulkarni, R.; Man’ko, V.; Marmo, G.; Sudarshan, E.; Ventriglia, F. Classical and quantum Fisher information in the geometrical formulation of quantum mechanics. Phys. Lett. A 2010, 374, 4801–4803. [Google Scholar] [CrossRef]
- Bayes, T. An essay towards solving a problem in the doctrine of chances. Phil. Trans. R. Soc. Lond. 1763, 53, 370–418. [Google Scholar] [CrossRef]
- Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. London. Ser. Math. Phys. Sci. 1946, 186, 453–461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernal-Casas, D.; Oller, J.M. Information-Theoretic Models for Physical Observables. Entropy 2023, 25, 1448. https://doi.org/10.3390/e25101448
Bernal-Casas D, Oller JM. Information-Theoretic Models for Physical Observables. Entropy. 2023; 25(10):1448. https://doi.org/10.3390/e25101448
Chicago/Turabian StyleBernal-Casas, D., and J. M. Oller. 2023. "Information-Theoretic Models for Physical Observables" Entropy 25, no. 10: 1448. https://doi.org/10.3390/e25101448
APA StyleBernal-Casas, D., & Oller, J. M. (2023). Information-Theoretic Models for Physical Observables. Entropy, 25(10), 1448. https://doi.org/10.3390/e25101448